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Abstract

Redshift provides functionality to sort rows in a table according to
the values in the table columns. Sorting is however not according to the
entire values in the columns, but according only to an eight byte signed
integer, known as the sorting value, which is derived from each value,
where the method used to derive the sorting value varies by data type.
This document describes in detail the methods used to derive sorting
values. About half of the data types sort as would be intuitively expected,
but half do not, and system designs which assume all data types to sort
as intuitively expected are not functioning as their designers expect.
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Introduction
In conventional relational databases, which is to say unsorted relational
databases, such as Postgres, rows in tables have no ordering - they are not
sorted. Rows typically are stored in the order in which they were added.

Redshift is a sorted relational database, which is to say there is support for
specifying the order in which rows are held in tables, by dint of each table in its
DDL specifying a series of one or more of its columns, known as the sort key,
where the rows in the table are sorted according to the values in those columns.

So, for example, a table with three columns, surname, name and ‘age’, which
specifies a sort key of surname and then name, will sort all rows first by the
surname (in ascending order), and then for the set of rows for every unique
surname, those rows will be further sorted in the order of the value in the name
column (again, in ascending order). The age column will be left in whatever
order happened to come from the actions to sort the preceding columns.

This functionality is the entire point of Redshift and is by far the most important
of the mechanisms by which Redshift is able to provide timely SQL on Big Data.

The Redshift documentation to my eye has very little to say about sorting -
which is to say, there’s a lot about how awesome it is, and almost nothing about
how it works and how to use it correctly, and it must be used correctly, because
if it is not, then Redshift effectively degenerates to being an unsorted relational
database, and loses the capability to provide timely SQL on Big Data. You’d
be better off with an unsorted column-store database, since they’re much less
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knowledge-intensive to use correctly (note though this is a type of relational
database AWS do not offer as a product, so the best you can do if you are
sticking with AWS is Postgres).

In the documentation, the most important statement to be found is that sorting
is not based on the entire value in a column, but “uses the first eight bytes of
the sort key to determine sort order” (sort key here is referring to the value
in the column). I remember similar statements being in a couple of places in
the documentation, to the effect that the first eight bytes of the value on disk
are used to determine the sorting order, but now all I can find is here (which
is quoted above). I may be wrong, but I think this statement has been largely
removed and we see now only that which was overlooked.

The only other useful statement the documentation is that sorting is ascending;
so rows go from their smallest value to their largest.

So, in fact, what is happening with sorting is that Redshift derives a signed
eight-byte value, which I will call the sorting value, from each value in each
column, where the method used to derive the value varies by data type. The
value stored on disk is not used, although with some simple data types (the
integers, for example) by co-incidence the value on disk does indeed happens to
be the same as the sorting value - really this just means the method to derive
sorting values for those data types happens to be very simple.

Knowing how sorting values are derived for each data type is necessary to know-
ingly correctly design systems using Redshift. The lack of this information in
the documentation is one of a number of omissions which fundamentally prevent
developers from knowingly correctly designing systems using Redshift, which
leads of course to failures, and this is, in my view, ultimately responsible for the
success of Snowflake in capturing business from Redshift.

This document does not attempt to explain the purpose, function and imple-
mentation of sorting, as it is a large topic. This will be for a future document.

Test Method
A table is created which contains two columns.

The table has key distribution, on the first column, and the value inserted into
the first column is always 0. This allows us to ensure all rows go to the same
single slice, which simplifies testing.

The second column is of the data type we are investigating; the test method as
a whole iterates over every data type, dropping and recreating the test table
every time.

We then insert one row into the table, with a test value going into the second
column.

We then examine STV_BLOCKLIST, to obtain the minimum and maximum sorting
values for the block which now exists for the second column, which contain the
single row in the table, which we just inserted.
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Since there is only one row, this allows us to see the sorting value for the value
we inserted.

The table is then truncated, and further test values are inserted, one by one,
retrieving the sorting value every time.

This builds up a body of data which allows us to figure out how the sorting
value is being derived from the value.

Results
See Appendix A for the Python pprint dump of the results dictionary.

The Line column is used to make it easy, in the Discussion, to reference a given
Value/Sorting Value pair.

dc2.large, 2 nodes (1.0.28965)
char(64)

Line Value Min Sorting Value (hex) Max Sorting Value (hex)
1 ‘MARTINEZ’ 5a454e495452414d 5a454e495452414d
2 ‘MURPHY’ 59485052554d 202059485052554d
3 ‘abcdefg’ 67666564636261 2067666564636261
4 ‘\ttuvwxyz’ 7a79787776757409 7a79787776757409
5 ‘tuvwxyz’ 7a797877767574 207a797877767574
6 ‘1234567 1234567’ 37363534333231 2037363534333231
7 ‘1234567a1234567’ 6137363534333231 6137363534333231
8 NULL 7fffffffffffffff 8000000000000000

varchar(64)

Line Value Min Sorting Value (hex) Max Sorting Value (hex)
1 ‘MARTINEZ’ 5a454e495452414d 5a454e495452414d
2 ‘MURPHY’ 59485052554d 202059485052554d
3 ‘abcdefg’ 67666564636261 2067666564636261
4 ‘\ttuvwxyz’ 7a79787776757409 7a79787776757409
5 ‘tuvwxyz’ 7a797877767574 207a797877767574
6 ‘1234567 1234567’ 37363534333231 2037363534333231
7 ‘1234567a1234567’ 6137363534333231 6137363534333231
8 ‘アィイ’ 82e3a382e3a282e3 82e3a382e3a282e3
9 ‘アィゥ’ 82e3a382e3a282e3 82e3a382e3a282e3
10 المطر‘ تجلب الداكنة ’الغيوم 8ad9bad884d9a7d8 8ad9bad884d9a7d8
11 تجلب‘ الداكنة ’الغيوم 8ad9bad884d9a7d8 8ad9bad884d9a7d8
12 مويغلا‘ ةنكادلا بلجت ’رطملا 84d985d9b7d8b1d8 84d985d9b7d8b1d8
13 مويغلا‘ ةنكادلا ’بلجت aad8acd884d9a8d8 aad8acd884d9a8d8
14 ‘dark clouds bring’ 6f6c63206b726164 6f6c63206b726164
15 ‘dark clouds bring rain’ 6f6c63206b726164 6f6c63206b726164
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Line Value Min Sorting Value (hex) Max Sorting Value (hex)
16 ‘gnirb sduolc krad’ 6473206272696e67 6473206272696e67
17 ‘niar gnirb sduolc krad’ 696e67207261696e 696e67207261696e
18 NULL 7fffffffffffffff 8000000000000000

date

Line Value Sorting Value
1 ‘4713-01-01 BC’ -2451507
2 ‘0001-12-31 BC’ -730120
3 ‘0001-01-01 AD’ -730119
4 ‘1999-12-31 AD’ -1
5 ‘2000-01-01 AD’ 0
6 ‘2000-01-02 AD’ 1
7 ‘5874897-12-31 AD’ 2145031948
8 NULL 9223372036854775807

float4

Line Value Sorting Value
1 ‘NaN’ -9223372036854775808
2 -3.402823e+38 -9223372036854775808
3 -9223371761976868352.0 -9223372036854775808
4 -9223371761976868351.0 -9223371487098961920
5 -1234.56789 -1234
6 -50.75 -50
7 -50.0 -50
8 -1 -1
9 -0.5 0
10 0 0
11 0.5 0
12 1 1
13 50.0 50
14 50.75 50
15 1234.56789 1234
16 9223371761976868351.0 9223371487098961920
17 9223371761976868352.0 9223372036854775807
18 3.402823e+38 9223372036854775807
19 NULL 9223372036854775807

float8

Line Value Sorting Value
1 ‘NaN’ -9223372036854775808
2 -1.7e+308 -9223372036854775808
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Line Value Sorting Value
3 -9223372036854775296.0 -9223372036854775808
4 -9223372036854775295.0 -9223372036854774784
5 -1234.56789 -1234
6 -50.75 -50
7 -50.0 -50
8 -1 -1
9 -0.5 0
10 0 0
11 0.5 0
12 1 1
13 50.0 50
14 50.75 50
15 1234.56789 1234
16 9223372036854775295.0 9223372036854774784
17 9223372036854775296.0 9223372036854775807
18 1.7e+308 9223372036854775807
19 NULL 9223372036854775807

int2

Line Value Sorting Value
1 -32768 -32768
2 -100 -100
3 -1 -1
4 0 0
5 1 1
6 100 100
7 32767 32767
8 NULL 9223372036854775807

int4

Line Value Sorting Value
1 -2147483648 -2147483648
2 -100 -100
3 -1 -1
4 0 0
5 1 1
6 100 100
7 2147483647 2147483647
8 NULL 9223372036854775807

int8
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Line Value Sorting Value
1 -9223372036854775808 -9223372036854775808
2 -100 -100
3 -1 -1
4 0 0
5 1 1
6 100 100
7 9223372036854775807 9223372036854775807
8 NULL 9223372036854775807

numeric(18,0)

Line Value Sorting Value
1 -999999999999999999 -999999999999999999
2 -15 -15
3 -1 -1
4 0 0
5 ‘NaN’ 0
6 1 1
7 15 15
8 999999999999999999 999999999999999999
9 NULL 9223372036854775807

numeric(18,4)

Line Value Sorting Value
1 -99999999999999.9999 -999999999999999999
2 -15.5000 -155000
3 -15.0000 -150000
4 -15 -150000
5 -1.0000 -10000
6 0.0000 0
7 1.0000 10000
8 15 150000
9 15.0000 150000
10 15.5000 155000
11 99999999999999.9999 999999999999999999
12 NULL 9223372036854775807

numeric(38,0)

Line Value Sorting Value
1 -99999999999999999999999999999999999999 -5421010862427522171
2 -36893488147419103233 -3

7



Line Value Sorting Value
3 -36893488147419103232 -2
4 -18446744073709551617 -2
5 -18446744073709551616 -1
6 -9223372036854775809 -1
7 -9223372036854775808 -9223372036854775808
8 -9223372036854775807 -9223372036854775807
9 -15 -15
10 -1 -1
11 0 0
12 ‘NaN’ 0
13 1 1
14 15 15
15 9223372036854775806 9223372036854775806
16 9223372036854775807 9223372036854775807
17 NULL 9223372036854775807
18 9223372036854775808 0
19 18446744073709551615 0
20 18446744073709551616 1
21 36893488147419103231 1
22 36893488147419103232 2
23 99999999999999999999999999999999999999 5421010862427522170

time

Line Value Sorting Value
1 ‘00:00:00.000000’ 0
2 ‘00:00:00.000001’ 1
3 ‘00:00:01.000000’ 1000000
4 ‘00:01:00.000000’ 60000000
5 ‘01:00:00.000000’ 3600000000
6 ‘23:59:59.999999’ 86399999999
7 NULL 9223372036854775807

timetz

Line Value Sorting Value
1 ‘00:00:00.000000+0’ 0
2 ‘00:00:00.000001+0’ 1
3 ‘12:00:00.000000+0’ 43200000000
4 ‘23:59:59.999999+0’ 86399999999
5 ‘22:00:00.000000-4’ 7200000000
6 ‘02:00:00.000000+0’ 7200000000
7 NULL 9223372036854775807
8 ‘00:00:00.000000-1459’ 53940000000
9 ‘00:00:00.000000+1459’ 32460000000
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timestamp

Line Value Sorting Value
1 ‘4713-01-01 00:00:00.000000 BC’ -211810204800000000
2 ‘0001-12-31 23:59:59.999999 BC’ -63082281600000001
3 ‘0001-01-01 00:00:00.000000 AD’ -63082281600000000
4 ‘1999-12-31 23:59:59.999999 AD’ -1
5 ‘2000-01-01 00:00:00.000000 AD’ 0
6 ‘2000-01-01 00:00:00.000001 AD’ 1
7 ‘2000-01-01 00:00:01.000000 AD’ 1000000
8 ‘2000-01-01 00:01:00.000000 AD’ 60000000
9 ‘2000-01-01 01:00:00.000000 AD’ 3600000000
10 ‘2000-01-02 00:00:00.000000 AD’ 86400000000
11 ‘2000-02-01 00:00:00.000000 AD’ 2678400000000
12 ‘2001-01-01 00:00:00.000000 AD’ 31622400000000
13 ‘294276-12-31 23:59:59.999999 AD’ 9223371331199999999
14 NULL 9223372036854775807

timestamptz

Line Value Sorting Value
1 ‘4713-01-01 00:00:00.000000-1459 BC’ -211810150860000000
2 ‘1999-12-31 23:00:00.000000+0 AD’ -3600000000
3 ‘2000-01-01 00:00:00.000000+0 AD’ 0
4 ‘2000-01-01 00:00:00.000000+1 AD’ -3600000000
5 ‘294276-12-31 23:59:59.999999+1459 AD’ 9223371277259999999
6 NULL 9223372036854775807

Discussion
char and varchar
There’s a great deal of complexity involved in the derivation of sorting values
from char and varchar.

On the very surface, it’s simple : the first eight bytes of the string form the bit
pattern which is used as the sorting value.

However, when we examine the sorting values for strings, the first thing we find
they’re reversed, and this needs to be explained.

Once that’s out of the way, the next thing we find is there’s a bug in how sorting
values are formed. Redshift keeps track for each disk block the minimum and
maximum sorting values of all the rows in the block. With this bug, what you
find it with strings you can end up having different minimum and maximum
sorting values for the same string. You can have a block with one row, which
has a different minimum and maximum sorting value; likewise, you can have
a block with two or more rows, which are different values, but which has the
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same minimum and maximum sorting values. A couple of years ago I tried for
six months to get Support to understand, before eventually giving up.

Then we need to move on to how sorting values are formed for multi-byte UTF-8
strings.

Having set the scene by beginning to look into Unicode, we then need to examine
what happens with right-to-left scripts.

Finally, to help us all recover from the deluge, I finish off with a simple little
note about char and a word or two about NULL, at which point we can all go
and have tea and biscuits.

Sorting Value Reversal

When we compare strings, what we do conceptually speaking is compare byte-
by-byte from the most significant letter to the least significant letter. This leads
to the question of what the most and least significant letters are.

We can demonstrate this with a little list of two surnames;

MARTINEZ
MURPHY

If we sort this little list, we compare the names from left-to-right; the “M” first
(the strings are equal), then the “A” with the “U” and now we see MARTINEZ
is smaller and we can in fact stop comparing at this point. (One thing we see
here, and I’ll come back to this since it’s important, is that although MURPHY
is shorter than MARTINEZ, it is still larger.) In our comparison here what
we really have done is a character-by-character compare, from most significant
letter to least significant letter, and we see the most-significant letter for left-to-
right scripts is the left-most letter (and for right-to-left scripts, which we come
to later, it is of course the right-most letter).

We now need to think about how a string is stored in memory.

To make this explanation simple we have a string which is all single-byte UTF-
8/ASCII, and we see a string is an array of one byte values, and being a left-to-
right script, the most significant letter is on the left and has the lowest memory
address, the least significant letter is on the right and has highest memory
address, which is also how we write a string on paper or in a document like this.
So in memory, we write MARTINEZ like this;

MARTINEZ

Which is to say, from lowest (‘M’) to highest (‘Z’) memory addresses.

Now, when we store a number - say an eight byte integer like the sorting value
- where we’re little endian, the least significant bytes are in the lowest memory
addresses, the most significant bytes are in the higher memory addresses. A
problem now comes that this is not how we actually write numbers on paper or
in a document like this.

So let’s say we have the number ten million; we ourselves write it like so;

10,000,000.
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In memory though, ten million is stored like this;

000,000,01

Which is to say, from lowest (the first ‘0’) to highest (the ‘1’) memory addresses.

Razor-witted, eagle-eyed readers who’ve recently imbibed extra-strength coffee
may begin already to see where this is going.

When Redshift is scanning sortkey values in the Zone Map, it is performing
compares of signed eight-byte integers - “is this number larger than, less than
or equal to this other number?”

Numbers of course are arranged as we’ve just seen like so - “000,000,01” - and
so when numbers are being compared, the code which does this work knows
this and that their most-significant byte is in the highest memory address and
it does the right thing.

The problem is though that this is not how strings are arranged in memory.
Strings store their most-significant byte (the most-significant letter) in the lowest
memory address. Strings are the wrong way around! so if we took the first eight
bytes of a string, made a sorting value of it (a signed eight byte integer), and tried
to compare it, we’d in effect be comparing the string from its least-significant
letter toward its most-significant letter, and that’s wrong.

(If we did a string compare, we’d be fine, because the string compare code knows
the most-significant letter is in the smallest memory address and would expect
it and depend upon it and do the right thing - but we’re not; we’re using the
code which does signed integer compares).

So what happens, of course, is that when Redshift is producing sorting values
for char or varchar, the first eight bytes from the string are reversed to produce
the sorting value.

This allows Redshift to compare sorting values for strings using a normal signed
eight-byte integer comparison, as by reversing the string this comparison is in
effect performing a string compare.

We’ve now covered enough for me to be able to describe to you the explanation
for an otherwise confusing observation made when examining minvalue and
maxvalue in STV_BLOCKLIST that for blocks in char and varchar columns we
can find plenty of blocks where minvalue is larger than the maxvalue.

Let’s begin by looking at our two-name example data;

MARTINEZ
MURPHY

In alphanumeric sorting, MARTINEZ is smaller than MURPHY, but note that
MURPHY is shorter and where it is less than eight bytes is being padded with
spaces (ASCII decimal 32, hex 0x20).

Since MARTINEZ is smallest, the block will use its sorting value as the
minvalue for the block, and the maxvalue will be from MURPHY.

Here are the minvalue and maxvalue as they are stored, in their reversed form,
in STV_BLOCKLIST;
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0b 01011010 01000101 01001110 01001001 01010100 01010010 01000001 01011010
0x 5a 45 4e 49 54 52 41 4d

Z E N I T R A M

0b 00100000 00100000 01011001 01001000 01010000 01010010 01010101 01001101
0x 20 20 59 48 50 52 55 4d

Y H P R U M

The minvalue then is 0x5A454E495452414D and the maxvalue is the much
smaller value of 0x202059485052554D :-)

What’s happened is that the reversing of the byte order has put the padding,
which has a low value, into the most significant bytes of the maxvalue, and so
it becomes smaller than minvalue.

In fact, as we will see, padding with spaces looked to be a bug. Padding should
be with binary 0. However, even if it was, we would still see a reversed minvalue
and maxvalue, because MURPHY is shorter than eight bytes, and so is padded,
and the reversal of the sorting value to allow integer compare to work makes
the sorting value for MURPHY a small number, by putting zeros into the most
significant bits.

Sorting Value Bug

For every data type (except as we will see, char and varchar), a single value has
a single sorting value. This is inherent and seems obviously to be so. Redshift
keeps track of the minimum and maximum sorting values for each block, and
if a block has only one value, the minimum and maximum must be identical.
It would hardly make sense for one value to have different sorting values for
minimum and maximum - except that is what happens with char and varchar.

To compute the minimum sorting value for a string, Redshift takes the first eight
bytes of the string and then as we’ve discussed reverses them but, crucially, if
the string is shorter than eight bytes, then the sorting value being eight bytes
long has to be padded to its full length.

What we find is that for the minimum sorting value, Redshift pads with binary
0, but for the maximum sorting value, padding is with space characters (ASCII
decimal 32, hex 0x20).

So “MURPHY” becomes for the minimum sorting value (the ‘0’ here means
binary zero, not ASCII zero) “00YHPRUM”, but for the maximum sorting
value becomes “SSYHPRUM” (the ‘S’ here means ASCII space).

We see the minimum and maximum sorting values for “MURPHY” are;
0b 00000000 00000000 01011001 01001000 01010000 01010010 01010101 01001101
0x 0 0 59 48 50 52 55 4d

Y H P R U M

0b 00100000 00100000 01011001 01001000 01010000 01010010 01010101 01001101
0x 20 20 59 48 50 52 55 4d

Y H P R U M

As such, a block with a single row, where that row is a string which is less than
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eight bytes, has different minimum and maximum sorting values, even though
there is only one record.

Remember now the purpose of the Zone Map, and the method by which it
functions, is to keep track of the minimum and maximum sorting values in
each block in each column in each table, such that when we search for a value,
we compute its sorting value and compare it to the minimum and maximum
sorting values for every block in the table; if the sorting value is smaller than
the minimum sorting value for a block, or greater than the maximum, then
Redshift knows it does not need to read that block.

What’s happening here is that the maximum sorting value is larger than it ought
to be, and as such, there are going to be times when Redshift thinks it must
read a block when in fact it did not need to do so.

Now, on the face of it, the impact of this bug is vast, because the maximum
sorting value becomes very large indeed, because the binary 32 used for padding
is setting bits up at the most-significant end of the sorting value. The maxi-
mum sorting value for MURPHY ought to be 0x59485052554d, but is in fact
0x202059485052554d, which is a much larger value.

As an example, imagine we have a column which is char(1) and it contains the
letter f or m, to indicate gender, and that the column is fully sorted, so we have
blocks which are either all f or all m. (Ignore the boundary block which has
some f and some m.)

We can search for either f (0x66) or m (0x6D).

Let’s imagine we search for m.

What should happen is Redshift computes the sorting value for m, and then
compares it against every block, and if it is equal to or greater than the minimum
sorting value for a block, and equal to or smaller than the maximum sorting
value for that block, then that block will be read; otherwise it will not be read.

The intention here then is that we end up ignoring all the blocks which contain
f and reading all the blocks which contain m.

What we expect to find though because of this bug is that every block has
the correct minimum sorting value, but a huge maximum sorting value; and so
searching for the sorting value 0x6D we find it is always greater than or equal
to the minimum sorting value for blocks (which is 0x66 for f blocks and 0x6D
for m blocks) and then, critically, is always less than the maximum sorting value,
both for blocks of f and blocks of m, because the maximum sorting value is so
large (being hex 0x2020202020202066 and 0x202020202020206D, respectively).

In other words, we end up reading every block, instead of just those containing
m.

However, this is not what happens - because the bug in how sorting values are
computed also exists in another part of the code, and this acts to almost but
not quite fully mask the problem.

It turns out that when computing the sorting value for the value being searched
for, Redshift is also here producing two different sorting values; as before, the
first padded with binary zero and the second padded with spaces.
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What happens then is that Redshift uses the first version when comparing
against the minimum sorting value for a block, and the second version when
comparing against the maximum sorting value for a block.

So when we search for m, the sorting value used to compare with the minimum
sorting value for a block is 0x6D, but the sorting value used to compare with
the maximum sorting value for a block is 0x202020202020206D.

This second blunder almost, but not completely, masks the effect of the first
blunder.

If we imagine now searching for m, when we examine a block containing only f,
we will as before be greater than the minimum sorting value of the block (and
so, so far, the block is eligible to be read) but then the maximum sorting value
of m is 0x202020202020206D, but the maximum sorting value of the block is
0x2020202020202066, so we do not read the block.

Phew! two wrongs do make a right - well, almost. We are in fact not quite off
the hook, because in fact you can still go wrong, and read blocks you do not
have to read.

Imagine you have an table with a single char(8) column, and it’s filled with
random seven character strings, from abcdefg to tuvwxyz. (This is a contrived
example so I can most easily demonstrate the problem; you can generalize after
you understand it.)

Since these are seven byte strings, there is one byte of padding, and so each
block will have its minimum sorting value, which is correct, and its maximum
sorting value, which is much larger than it should be, because the padding byte
is the most significant byte and it is set to 0x20.

We can assume every block will contain at least one abcdefg (the smallest value)
and one tuvwxyz (the largest value).

As such, for each block, the minimum sorting value will be 0x0067666564636261
(remembering that the string is reversed and then padded), and the maximum
sorting value will be 0x207A797877767574.

What now happens if we search for the string \textbackslash{}ttuvwxyz?

The minimum and the maximum sorting value for \textbackslash{}ttuvwxyz
are both 0x097A797877767574, because we have an eight byte string so no
padding is occurring.

We see that this minimum sorting value is larger than the minimum sorting value
of the blocks, and that the maximum sorting value is less than the maximum
sorting values of the blocks - and so we do in fact end up reading every block in
the column, even though we should read none at all.

The basic problem is that by padding with 0x20, any ASCII characters below
that can sneak in under the radar - there aren’t many though which are com-
monly used, I think only space, tab and newline.

However, there is an additional aspect to this bug, which complicates matters,
and makes my head hurt (which is to say, makes it hard to reason about).
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You see, it turns out the strings which are affected are not only those which are
less than eight bytes in length.

If a string has one or contiguous spaces which cross the eighth byte position,
the bug also happens then; and in fact I think it really the proper definition of
when this bug manifests.

So we find the string 1234567a1234567 has the same minimum and maximum
sorting value, of 0x6137363534333231.

The string 1234567 1234567 however (note the central ‘a’ is now a space)has
a minimum sorting value of 0x37363534333231 but a maximum sorting value of
0x2037363534333231.

(Although an explanation of the proof is beyond the scope of this document,
note that for values which produce two sorting values, it is the maximum sorting
value which is used when ordering rows in the column, and so influencing the
effectiveness of sorting - just to add a bit more complexity, in case we didn’t
have enough already.)

I find it has now become impossible to reason out the consequences of this bug.

I would like it just be fixed, so I can stop having to think about it.

I tried for more than half a year to get Support to understand the issue, but they
never did and in the end I gave up. It took months just to get the Support guy
once I’d explained and he’d understood how sorting values were produced in his
excitement at this new understanding to refrain from simply reiterating back to
me how the values were being made; he seemed actually and literally to reason
that because he could explain how they were made and so could duplicate the
values found in STV_BLOCKLIST, they must be correct. Eventually I was able to
get him to consider that they might be being made in the wrong way, so that
even though we could duplicate the working, it could still be wrong. At one
point he went off to talk to someone else, here I think trying to explain an issue
he didn’t properly understand to someone else who didn’t understand, and they
came back to me with a reply something like “this can’t be a bug because if
it was a bug in sorting it would have a huge impact and everyone would have
noticed by now”.

At this point I gave up trying.

Then after another two months or so, out of the blue, I was told again but now
without any explanation this behaviour was in fact by design and the docs would
be updated with more information. That was (at the time of writing) two years
or so ago, and as far as I know, and I have looked, no update has occurred, and
I’ve not heard from them again since then.

This experience came at a point where I’d already come to be fairly solidly
disillusioned with Support, and it was about this time I stopped paying for
Support. It wasn’t that it was expensive - it’s not, AWS ask a token fee only -
but that it wasn’t worth having at all, even if it were free.
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Multi-Byte UTF-8 Strings

The varchar data type is UTF-8. Redshift however to my knowledge has no
actual understanding of Unicode; it doesn’t parse or validate, it simply treats
strings as bytes (in the C/C++ manner, with 0 being the end-of-string marker).
I believe the only differences between char and varchar as far as encodings
go is that for char there is a check that the top bit in each byte being clear,
and this check is not enforced for varchar, and that with varchar there are
a couple of short byte sequences (presumably varying by Unicode encoding, as
COPY supports more than UTF-8) which are scanned for and if found cause the
string to be rejected. These byte sequences are the forbidden code-points.

Now, quick Unicode refresher. Each character/glyph has a unique integer num-
ber - its code-point - and the code-points can be represented in different ways,
such as UTF-8, UCS-16 and so on. So the actual conceptual value, the code-
point, is always the same, but the binary representation varies.

With UTF-8, code-points are represented in one to four bytes; the larger the
code-point value, the more bytes are needed. Seven bit ASCII uses one byte,
then we go to two bytes for things like Greek and accented characters, the three
bytes for the Japanese scripts (all of them), and so on.

In fact, what’s done is this, for code-point ranges from “Start” to “End”, where
the “x” bits are data-bearing bits and the other bits are structural;

Start End Binary Representation
0x00000000 0x0000007F 0xxxxxxx
0x00000080 0x000007FF 110xxxxx 10xxxxxx
0x00000800 0x0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
0x00010000 0x001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

We see then for example with four byte UTF-8, we’re consuming 32 bits, but
there are only 21 data-bearing bits. The other 11 bits are structural.

So the first thing to note is that where Redshift doesn’t know about Unicode,
and it just uses the first eight bytes, a lot of the sorting value are the structural
bits from Unicode. Redshift could be making better use of the eight bytes it
has by only using actual data bits from the string.

Next, it’s entirely possible for a multi-byte UTF-8 character to be truncated.
Katakana (one of the Japanese scripts) for example are all three bytes. If any
of the 125m Japanese out there are using Redshift, and storing katakana, the
sorting values will contain the first two characters in full and then the first two
bytes of the third character.

A problem here is that the first two bytes of any single katakana matches most
of the other katakana characters. There are 96 katakana characters in the
main Unicode katakana code page, which are contiguous code-points, starting
at 0x30a0. We find for the first 64 characters, the first two bytes of UTF-8 are
identical, and for the other characters, the first two byte are identical but the
second byte differs from the first 64 characters.

16

https://www.unicode.org/charts/PDF/U30A0.pdf


This means those two bytes of the last character in the sorting value are not
doing much in the way of selecting a third character; we really only have pretty
much only two characters of sorting for katakana strings.

If we were using only the data-bearing bits, we’d be doing better - it’s 15 bits
per character. we have 8 bytes to play with, which is 64 bits, so we’d get five
characters of sorting.

We can demonstrate this by looking at a few Katakana characters;

Katakana Hex Bin UTF-8 binary
゠ 0x30a0 11000010100000 11100011 10000010 10100000
ア 0x30a1 11000010100001 11100011 10000010 10100010
ィ 0x30a2 11000010100010 11100011 10000010 10100011
イ 0x30a3 11000010100011 11100011 10000010 10100100
ゥ 0x30a4 11000010100100 11100011 10000010 10100101

Katakana is left-to-right, same as Latin (and one of the reasons I chose it here
for the example - easier to reason about).

So we would have a katakana word, let’s make up a garbage word from the few
characters above, “アィイ” (“pregnant hippo pizza”). The most significant letter
is still on the left, and so this is stored in binary on the right (least significant
bits). Redshift however knows nothing about UTF-8, so it’s not moving data
on a per-character basis (moving three bytes at once, and so reversing on a
per-character basis), but simply reversing all the bytes, so we have this;

The original word : “アィイ”, is “11100011 10000010 10100010, 11100011
10000010 10100011, 11100011 10000010 10100100”

This is reversed so integer compare works, and so is stored with the most signifi-
cant letter in the least significant bits, like so (commas between each code-point);

10100100 10000010 11100011, 10100011 10000010 11100011, 10100010 10000010
11100011

And since the sorting value is eight bytes, one byte is thrown away, like so;

10000010 11100011, 10100011 10000010 11100011, 10100010 10000010 11100011

We can see this in the test data on line 8, with a sorting value of
0x82e3a382e3a282e3, which is the hex equivalent of the binary above.

The problem is that the remaining two bytes of the truncated last character,
which are “10000010 11100011”, match 32 of the 96 katakana characters. (The
other 64 are all matched by “10000010 11100011”, so if the final character had
been one of the other 64, we would be matching 64 characters).

This means sorting is not going to happen in the way you expect.

We can see this in the test data on line 9, for the string “アィゥ”. Different
final character, same sorting order, even though we have two bytes of that final
character in the sorting value.
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As an aside, you might be thinking at this point that surely Redshift to compare
strings must need to compare code-point with code-point, not byte with byte,
because if we did compare byte with byte, when we have characters with different
numbers of bytes we end up comparing structural bits to data bits and it all
goes to hell. In fact, UTF-8 is cunningly designed (this is how you know no
Government, standards body or large corporation had anything to do with it)
and a byte-by-byte compare is correct and valid with regard to code-points.

This does however lead to a problem when you have invalid UTF-8.

Redshift - and this is in general right and proper for a sorted column-store
relational database - performs almost no checking on data during ingestion. As
such, you can perfectly happily chuck in completely invalid UTF-8 - at which
point all bets are off, because its entirely possible some of the structural bits
are wrong; you might have say the first two bytes of a four-byte character and
then say a byte of all 1s. Redshift will carry on with its byte-by-byte compare,
but the results of that are of course going to be crazy, and in a way which is
hard to predict (since you’ll be having to think about structural bits as well as
data-bearing bits).

Right-to-Left Strings

Where varchar is storing Unicode, it is possible to be storing right-to-left
scripts.

When you have right-to-left scripts in Unicode, you’re faced with the question
of the order in which you store code-points.

Now, keep in mind that Redshift has no knowledge of Unicode; it simply stores
and retrieves the bytes given to it.

Consider the phrase “dark clouds bring rain” (line 14 in the test data).

This is written in a left-to-right script, and it is stored left-to-right in its text file
and in memory (the ‘d’ of “dark” being at the lowest memory address), where
Redshift has no clue about any of this and simply uses the eight bytes starting
at the lowest memory address and so in this case does The Right Thing; the
sorting value ends up being “dark clo”, which is what we want.

What we would not want is for Redshift to end up using the wrong end of the
string, and make the sorting value from “ing rain”.

Now consider the same phrase, but in Arabic, which is read right-to-left; الغيوم“
المطر تجلب .”الداكنة
The most-significant characters on now on the right side, ”الغي“ (Arabic is two
bytes per code-point, so we get four characters in the sorting value, not eight).

At this point we might start to wonder if Redshift is about to use the wrong
end of the string for the sorting value.

Well, it turns out all to be okay, because of the Unicode specification.

Unicode states that characters are stored in the order in which they are read.
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So for left-to-right scripts, our example text, “dark clouds bring rain”, are stored
in the order in which we read, from left-to-right, something we’re intuitively
familiar with.

For right-to-left scripts, our example text (line 10 in the test data), الغيوم“
المطر تجلب ,”الداكنة where we read it from the right hand side first, has the
right side characters being stored first. So, if we look at what’s in a Unicode
encoded file storing this string, it is the characters, one-by-one, starting from
the right hand side, and then proceeding to the left.

Redshift of course is oblivious to this : it simply uses the first eight bytes it
reads from the file - but because Unicode specifies right-to-left scripts are also
stored right-to-left, what Redshift is doing still picks up the Arabic equivalent
of “dark clo” (well, just “dark” - two bytes per character for Arabic).

We can see this on lines 10 and 11. On line 10, we have تجلب“ الداكنة الغيوم
,”المطر on line 11 we have only the first three (which is to say, the right-most)
words, تجلب“ الداكنة .”الغيوم If Redshift is doing the right thing, the sorting
value for these two strings will be identical; if Redshift is doing the wrong thing,
the sorting values will differ because the wrong end of the string is being used -
and we can see the sorting values are indeed identical.

Just to show what happens when the wrong thing does happen, on lines 12 and
13, I’ve taken the example Arabic string (both the full four-word string on line
12, and the first three words only on line 13) and stored it left-to-right. Here
we do see the sorting values differ, and this is as described occurring because
the wrong end of the string is now being used to produce the sorting value.

The same is in done in Latin on lines 14 to 17, to make it easier to perceive.)

So all is well, except for one tiny thought… given that varchar simply stores
whatever you give it, regardless of Unicode1, I wonder if there are people out
there storing non-Unicode encoding in varchars. If you are, or if you have a
client, who is doing this, and it’s a right-to-left encoding, remember that for
such encodings you also must store the characters right-to-left, or you’ll end up
storing by the wrong end of the string.

And, Finally…

First, note that char is 7-bit ASCII, and Redshift checks when char values are
inserted that the top bit is not set, and will fail the insert if it is. As such, the
sorting value for char wastes one byte of data; as with the structural bits in
UTF-8, we could be doing better.

Second, note (test data line 18) NULL has strange values for char and varchar.
Usually, as you will see with the other data types, NULL is given the maximum
possible sorting value (9223372036854775807). With strings, though, there are
again two sorting values - different for minimum and maximum - and the values
are 7fffffffffffffff and 8000000000000000, respectively.

1There’s a slight caveat to this. Redshift I think scans the byte-stream, and rejects certain
sequences of bytes, which represent forbidden code-points. I do not think Unicode decoding is
occurring; it’s just a scan of the byte stream. However, this could interfere with non-Unicode
encodings.
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I have no idea why.

date
date is a four byte data type, and so should be fully represented in the sorting
value.

The minimum value Redshift accepts is 4713-01-01 BC. The maximum value
Redshift accepts is 5874897-12-31 AD (the docs claim the maximum is 294276
AD, with no mention of dates, but in any event this is incorrect).

We see from line 1 and line 8 that these values result in a sorting value which
ranges from -2451507 to 2145031948, with each day changing the sorting value
by 1.

We also see NULL has a unique value.

Also of interest is that the sorting value of 0 is generated for 2000-01-01 AD,
which is a date found in a number of places in the system tables, where it means
in fact there is no actual date information - it’s basically a special value, where
we have to hope there’s never a real value on the same date :-)

In short, date works as intuitively expected, and has no unexpected behaviour.

float4 and float8
A float4 is four bytes and a float8 is eight bytes, and so both should be fully
represented in the sorting value.

This does not in fact occur.

What actually happens in both cases is that the sorting value is the integer part
only of the value. The fractional part is discarded.

(Note the test data for float4 and float8 are the same, so any test data line
numbers are valid for both data types.)

Looking to the test data at lines 6 and 7, we see that -50.75 and -50 both have
the sorting value of -50.

Similarly, looking lines 10 to 12, we see if either float type is being used to store
percentages as values in the range 0 to 1, all the sorting values (except of course
for 1.0) will be 0.

This method for deriving the sorting value inherently causes a further problem.

The number range of a float4 is -3.4e-38 to 3.4e38.

The number range of a float8 is -1.7e-308 to 1.7e308.

The number range of a signed eight byte integer (the sorting value) is -9.2e18
to 9.2e18.

In other words, floats can store much larger, and much smaller, values than
sorting values.

So the question then is what happens when the integer part of the float is smaller
or larger than can be represented by a sorting value?
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What happens is that the sorting value is clamped to the minimum and maxi-
mum value the sorting value can represent.

Note there’s a slight complication in this : the more a floating point value
differs from zero (positively or negatively) the larger the inherent floating point
inaccuracy becomes. For those of you not familiar with this, think of floating
point numbers as being like a wire fence with posts in. The wire is the infinitely
precisely continuum of numbers, but you are only allowed to store the numbers
at the posts. If you store a number between two posts, it is moved - changed -
to be the number at the nearest post. So if yous store, say, 550,000,000,000.5,
the number which is actually stored, and which you will get back when you read
it, is different, and might be, say, 550,000,000,341.62. As numbers get larger or
smaller, the gaps between the posts become larger. The distance between the
posts is much larger for float4 than it is for float8.

When we’re at the minimum and maximum values for the sorting value, the
inaccuracy for a float4 is 274,877,907,455, for a float8 is 511.

This means that once we get to within that inaccuracy of the minimum or
maximum sorting value, then the sorting value will already be at it’s maximum
or minimum (and be being clamped).

To put this into numbers, it means that all float4 values equal to or
below -9223371761976868352.0, and all float8 values equal to or below
-9223372036854775296.0, have the same sorting value (the minimum sorting
value), of -9223372036854775808.

We can see this on lines 3 and 4, and 16 and 17 of the test data. Changing the
value by 1 results in a change of about 550,000,000,000 in the sorting value; but
on lines8, 10 and 12, we see changing the value by 1 only results in a change of
1 in the sorting value.

Similarly, for positive values, all float8 values equal to or above 9223371761976868352.0,
and all float8 values equal to or above 9223372036854775296.0, have the same
sorting value (the minimum sorting value), of 9223372036854775807.

Data Type Minimum Maximum
float4 -9223371761976868352.0 9223371761976868352.0
fliest8 -9223372036854775296.0 9223372036854775296.0

Bear in mind now the minimum and maximum float4 value is 3.402823e+38
(nineteen more zeros than the min/max sorting value) and for float8 is
1.7e+308 (two hundred and eighty-nine more zeros), you can see most of the
number range of the floats have the same sorting value.

We can see this behaviour for both float4 and float8 on lines 3 and 4, and 16
and 17.

Now, I may be wrong, but I think there is a much better - indeed, the normal
- method for sorting floats, and if this is correct, then the current method, of
using the integer part of the sorting value, is a serious design blunder.

So; floating point values are stored according to the IEEE-754 specification.
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With this specification numbers are stored in two parts (within the four or eight
bytes in use), known as the mantissa and the exponent.

The mantissa is - to put is loosely but hopefully descriptively - the first few
non-zero digits in the number, and the exponent is the number of zeros to add,
either before or after those digits.

So a mantissa might be say 58512 and the exponent might be 6 - giving the
number 58,512,000,000.

Now, when you take the bit pattern formed by numbers in IEEE-754 represen-
tation and sort them as if they were normal unsigned two’s complement signed
integers, what you find is that the positive numbers sort correctly, but the
negative numbers have their sorting order reversed.

However, if you XOR with 0, then all the numbers sort correctly.

Why is Redshift not doing this?

If it did, then floating point numbers would be fully represented in the sorting
value, and so would have no clamping, and would also express their fractional
part in the sorting order, and so and would behave as intuitively expected.

Finally, changing subject, we see that the special number NaN (“Not A Number”)
has the sorting value -9223372036854775808 (the smallest possible sorting value),
and NULL, as usual, has the largest possible sorting value, 9223372036854775807.

In both cases these values are also being used by other numbers (in fact of course
with floats, by many other numbers, since the min and max sorting values are
the sorting values most of the number range is clamped to), so they are not
unique.

In short, float4 and float8 work in a completely unexpected manner, which
has serious issues, and indeed in a manner which may represent a serious design
blunder.

int2, int4 and int8
The int types are simple. Their value is used as the sorting value and as such
they behave almost entirely as intuitively expected.

The single exception is that NULL for int8 does not have a unique value, as it is as
usual given the maximum possible sorting value, which is 9223372036854775807.
The other integer types never use the maximum sorting value, so for them NULL
has a unique value.

numeric
The first (and as ever, undocumented) fact to know is that the numeric type
comes in two forms; an eight byte form and a sixteen byte form. Both are stored
as normal two’s compliment signed integer values. It is and only is the DDL
which determines the form is used; the actual values being stored is not involved.
It is simply that if in the DDL the numeric precision is 19 or less, eight bytes
are used. If precision is 20 or more, sixteen.
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(Note if you talk to Support about how numeric is encoded, they explain it
behaves like varchar. By this they mean that you in the DDL specify the
maximum precision but that values when stored actually only use as much
store as they need - in exactly the same way as you specify a maximum length
for a varchar, but then if you store a string shorter than this, only the actual
store needed for the string is consumed. They then point you at a page in the
Postgres docs, here, which states;

“The actual storage requirement is two bytes for each group of four
decimal digits, plus eight bytes overhead.”

This information is correct for Postgres but incorrect for Redshift. Redshift
uses eight bytes or sixteen bytes, depending purely on the DDL. Support are
distributing incorrect and misleading information.)

We need to consider the behaviour of the eight byte and sixteen byte numeric
separately, as they differ.

Before we do so, a brief aide memoir may be useful, with regard to how numeric
works : all values are stored as integers, but Redshift by knowing from the DDL
the scale can figure out where the decimal point should go when it comes to
actually displaying or doing work with the value.

Eight Byte Form

We have two sets of test data for eight-byte numeric, one for numeric(18,0)
and one for numeric(18,4).

Where the data type is using eight bytes, it should be fully represented in the
sorting value, and this is what we find.

The actual value being stored for the numeric is an eight byte integer, and this
is directly used - in the same way as an int8 - as the sorting value.

Unexpectedly, however, the special value NaN (Not A Number) has the sorting
value 0. With the float types, NaN is stored as -9223372036854775808 (the
smallest possible sorting value).

(One note about numeric with a precision of 19. According to the usual
way we think of a numeric the maximum value should be 19 digits of 9s,
e.g. 9,999,999,999,999,999,999. However, where this data type is actually under
the hood a signed eight byte integer, the maximum value for numeric(19,n) is
9,223,372,036,854,775,807 (the maximum for a signed eight byte integer). The
documentation writes about this, but it does not explain why.)

Moving on to numeric(18,4), we see the seemingly fractional values, such as
-15.5000 on line 2, are really stored as -155000, which is an integer, and that
-155000 is indeed being used directly as the sorting value.

This is the right thing to do, and as such, values are being sorted as would be
intuitively expected.

Unexpectedly, trying to store NaN in a numeric with a non-zero scale results in
an assert. This is likely a bug.
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-----------------------------------------------
error: Assert
code: 1000
context: numeric_scale(preset_size) == (numeric_scale(size)) -
query: 2668
location: step_project.cpp:251
process: padbmaster [pid=1791]
-----------------------------------------------

(This is why there is no NaN test data for numeric(18,4).)

NULL as usual has the sorting value 9223372036854775807, the largest possible
sorting value.

In short, eight byte numeric works as intuitively expected, and has no unex-
pected behaviour, except for the minor matter of NaN being 0, and throwing an
assert if scale is non-zero.

Sixteen Byte Form

Now things get a little tricky for Redshift. It’s dealing with a sixteen byte
integer, but the sorting value is an eight byte integer. What happens?

The answer is twofold;

1. For values in the range of a signed eight byte integer, the sorting value
is the lower eight bytes of the value, and so behaviour is what we would
intuitively expect.

2. For values outside of this range, the sorting value is the upper eight bytes
of the value, and so every 2^64 values has the same sorting value, and
all these sorting values overlap with the sorting values produced for the
values in the range of a signed eight byte integer.

Looking to the results to give example, we see from lines 7 and 16 inclusive
examples of case #1; the lower eight bytes are in use.

Lines 1 to 6, and 18 to 23, show the upper eight bytes in use, and we see then
sorting values for positive numbers begin at 0 and increment every 2^64 values,
and for negative values, sorting values begin at -1 and decrement every 2^64
values.

In other words, large blocks of numbers have the same sorting value.

This is unexpected, and of course not documented, but it is understandable
: there are only eight bytes in the sorting value, so it’s hard to see what else
could be done. However, it should absolutely, like so much that is not, have
been documented.

Finally, we can turn to the minimum and maximum possible values, which are
-99,999,999,999,999,999,999,999,999,999,999,999,999 and
99,999,999,999,999,999,999,999,999,999,999,999,999, respectively (38 digits
of 9). The sorting values are -5421010862427522171 and 5421010862427522170,
respectively, which shows you just how large these numbers are - there are
5421010862427522170 lots of 2^64 numbers in both the negative and positive
directions…
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So, in short, sixteen byte numeric does not work as intuitively expected. Large
number ranges have the same sorting value, and this is not something which
users could be expected to figure out on their own.

time
time is an eight byte value, and so should be fully represented in the sorting
value.

We can see that this is the case. The value range for the data type is
00:00:00.000000 to 23:59:59.999999, and these values give sorting values of
0 and 86399999999, respectively.

We see from lines 1 and 2 that adding one microsecond increases the sorting
value by 1, and from line 7 that NULL has a unique value.

In short, time works as intuitively expected, and has no unexpected behaviour.

timetz
Redshift does not really have timezone support and as such this data type is a
superficial wrapper to the time data type.

What’s unexpected is that Redshift does not store timezone information. What
actually happens when you populate a timetz is that you provide a time and a
timezone, and the timezone is applied to the time to convert it to UTC, and this
is stored.

The docs never actually come out and say this - actually, it’s worse than that;
the docs misled you to thinking the timezone is stored.

“Use the TIMETZ data type to store the time of day with a time
zone.”

I mean if you read that, and you’re coming to this thinking - as you will be -
that this is a data type which supports timezones, what are you going to think?
You’re going to think the timezone is being stored. I see a constant low rate
of questions on-line where people are flummoxed by it, as they are expecting
Redshift to be storing the timezone.

All time and date values in Redshift are treated as and assumed to be UTC,
because of the absence of timezone information. Accordingly, there is no way for
you, unless you yourself store the original timezone, to go back to the timezone
the original time or date was in.

This approach unfortunately leads to a fundamental problem with the derivation
of the sorting value for timetz.

If we look back to the time type, we see that it represents one day, and each
microsecond represents a sorting value of 1.

Now, the timetz type is only a wrapper for the time type; timetz simply and
only causes a modification to be performed on the time before it is stored in a
time, converting it to UTC. So, for example, the time 12:00 with the timezone
UTC-2, will be converted to 14:00 and that is the time which will be stored.
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The killer problem is that if the timezone moves the time to be before
00:00:00.000000 or after 23:59:59.999999, the time does not move into
another day - there is no other day, because a time only can represent a single
day - so it gets wrapped.

So, for example, if you have the time 22:00:00 and the timezone UTC-4, this
becomes 02:00:00, and so has the same sorting value as all times at 02:00:00
in UTC (or at 03:00:00 in UTC-1, or 04:00:00 in UTC-2, etc). This is shown
on lines 5 and 6 of the test data.

You can now see the problem - many different times unexpectedly end up with
the same sorting value.

What’s actually happening is that sorting is occurring on the basis of the UTC
time, regardless of day, rather than occurring on the basis of the timezone and
then the time.

This is why it’s impossible to evoke a negative sorting value; the time type
doesn’t have negative sorting values (00:00:00.000000 is 0, 23.59.59.999999
is 86399999999, with each microsecond adding 1 to the sorting value), and the
timetz is mapping every time into the period of a single day, and so every time
ends up being between 00:00:00.000000 and 23.59.59.999999.

The question then is the impact this has the efficiency of the zone map.

Where timetz throws away the timezone, what we’re looking at is of course
identical to going from a compound sorted table with two columns, the first for
timezone and the second for time, to a compound sorted table with one column,
which is the time converted into UTC and wrapped into a single day.

Let’s imagine we want to perform a scan, based on a given time and timezone.

In the latter case, the first column means we’re now only looking at blocks with
times from our timezone; we then narrow down the actual blocks we’re going to
scan based on the blocks which contain times which happened at about when
our time occurred.

In the former case, we have only the one column, so we’re scanning times from
all timezones where those times happened to occur in UTC at about the same
time as the event we’re looking for.

In other words, as we might expect, loss of information (the timezone) reduces
our ability to narrow a search.

I regard the wrapping of times into one day, and its impact on sorting, as
unexpected behaviour. I do not think users will expect 14:00:00 Eastern Time
to have the same sorting value as 21:00 Central European Time, and it’s hard
to reason about. It is easiest to think about timezones sorting first, and then
times afterwards; rather than trying in your head to remember the offset of each
timezone from UTC and apply that to each time and so come up with the UTC
time and so the sorting value. I am not a robot.

Note that in real life (setting aside daylight saving, because it varies by country
and legislation, which varies over time, so it’s complex) the largest negative
timezone is -14 and the largest positive timezone is +12.
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However, the timetz accepts a timezone ranging from -1459 to +1459 hours
(yes - one thousand, four hundred and fifty nine hours, which is a bit more than
two months). This is shown on lines 8 and 9 of the test data. The sorting values
just happen to end up being whatever they are given whatever number of days
of “wrapping round” which occurs.

These large values should never be used - to do so will always be an error - and
so they should not be supported.

Finally, NULL has a unique sorting value (test data line 7).

So, with regard to timetz, it may be sorting by UTC works fine for a given use
case, but when it does not, you will need to use two columns; a normal time
column and a smallint where you store the timezone. Put both in the com-
pound sortkey, with the timezone column first. This will get you the expected
behaviour.

In short, timetz does not work as intuitively expected, and I advise this data
type is not used, but replaced with a manual two-column solution.

I am rather of the view this data type should not have been implemented, with
instead there simply being a page advising and explaining the use of one column
for timezone and one for time, and I am certainly of the view that having been
implemented as it has been, its behaviour should have been documented.

timestamp
timestamp is an eight byte value, and so should be fully represented in the
sorting value, and this is what we find.

As with time, each microsecond difference in value adjusts the sorting value by
1 (test data line 5 and 6).

The timestamp 2000-01-01 00:00:00.000000, as with date, gives the sorting
value of 0 (line 5).

The minimum timestamp is 4713-01-01 00:00:00.000000 BC, and this gives
the smallest attainable sorting value, of -211810204800000000 (line 1). There’s
a lot of negative sorting value range still available, so in principle the minimum
timestamp could have been much further back in time.

The maximum timestamp is 294276-12-31 23:59:59.999999 AD (line 13),
which gives the sorting value 9223371331199999999. We can see from line
12 that one year of values consumes 31622400000000 from the sorting value
range, and we can see that 9223371331199999999 + 31622400000000 =
9223402953599999999, which is larger than the maximum sorting value of
9223372036854775807 by 30916745224192. In other words, the maximum
timestamp value is the largest complete year which can be represented uniquely
in the sorting value. It’s not clear to me why this wasn’t also done for years
BC, but there you go; perhaps the developers are not ancient history buffs.

Finally, we see NULL has a unique sorting value (line 14).

In short, timestamp works as intuitively expected, and has no unexpected be-
haviour.
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timestamptz
As with timetz, timestamptz is a thin veneer over a normal timestamp. As
before what happens is that the timezone is specified with the timezone, the
timezone is applied to the timestamp to convert it to UTC, and the timestamp
is stored. The timezone information is lost; there is no way to find out what
timezone the timestamp was originally in.

Again, as with timetz, we see on lines 2 and 4, that the sorting value of
1999-12-31 23:00:00.000000+0 AD and 2000-01-01 00:00:00.000000+1
AD are the same; which is to say, sorting is ends up actually based on the UTC
timestamp.

The first matter of note of course is that now we’re working with a timestamp,
not just a time, this operation to adjust the timestamp according to its timezone
can change the date of a timestamp, by dint of the timezone when applied
moving the timestamp into the next or previous day.

That can be imagined to lead to problems; someone might know the date of an
event, but not know the timezone and entirely reasonably not know they would
need to know the timezone, and so not be able to find the event.

The main consideration though is sorting, since this determines how effectively
blocks will be culled by the zone map, which is absolutely central to performance
with Big Data.

Where timestamptz throws away the timezone, what we’re looking at is of
course identical to going from a compound sorted table with two columns, the
first for timezone and the second for timestamp, to a compound sorted table
with one column, which is the timestamp converted into UTC.

Let’s imagine we want to perform a scan, based on a given timestamp and
timezone.

In the latter case, the first column means we’re now only looking at blocks with
timestamps from our timezone; we then narrow down the actual blocks we’re
going to scan based on the blocks which contains timestamps which happened
at about when our timestamp occurred.

In the former case, we have only the one column, so we’re scanning timestamps
from all time-zones where those timestamps happened to occur in UTC at about
the same time as the event we’re looking for.

In other words, as we might expect, loss of information (the timezone) reduces
our ability to narrow a search.

We can also see this approach is problematic to reason about. I must, in my
mind, convert all my times and time zones to UTC, to figure out their sort-
ing order; so if I have say the timestamps 2021-06-05 14:35:20 Alma-Ata
Time, 2021-06-06 05:55:18 Australian Eastern Time(note this the day af-
ter), and 2021-06-05 01:30:00 Eastern Time, what order will they sort in?

Speaking as a human, “does not compute”.

Of course, given that a timestamp is an eight byte type, it’s hard to see what
else could be done; but then I would actually argue this data type should not
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have been introduced in the first place. It does not properly perform its job,
but by its existence will lead developers into using it, and as a result they are
writing inferior systems.

What should have happened is that the documentation should have explained
that you will need two columns, one to store the timezone, one to store times-
tamps.

To facilitate this support could have been added for a timezone data type.

Moving on, we see all the other attributes of this data type (which timestamp
produces a sorting value of 0, minimum and maximum values, that the minimum
and maximum timezone difference is over two months worth of hours, and so
on) are, of course, identical to that of timestamp, since timestamptz is under
the hood actually a timestamp.

In short, timestamptz does not work as intuitively expected, and I advise this
data type is not used, but replaced with a manual two-column solution.

(The existing Redshift support for timezone names can be used to figure out
the numeric timezone of a timestamp, by creating a timestamptz of a times-
tamp with timezone, and then subtracting from that the timestamp without the
timezone.)

Conclusions
Of the data types examined in this document, we observe then some behave as
we would intuitively expected, and some do not.

Data Type Intuitively Correct
char ✗
varchar ✗
date ✓
float4 ✗
float8 ✗
int2 ✓
int4 ✓
int8 ✓
numeric (eight byte form) ✓
numeric (sixteen byte form) ✗
time ✓
timetz ✗
timestamp ✓
timestamptz ✗

Knowing how sorting values are derived is necessary to know what a Redshift
system is doing when scans and joins occur, which in turn is necessary to know-
ingly correctly design a system using Redshift.

The way in which you would naturally think date, the ints, numeric with
precision 19 or less, time and timestamp to sort is indeed what they do and is
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technically right and correct.

The other data types behave in entirely unexpected and unexpectable ways,
such that system using these data types with the expectation they sort as you
would intuitively expect are incorrectly designed.

The char and varchar data types are by far the most complex to understand,
in part as strings (the values) and integers (the sorting values) sort differently
and this must be handled by Redshift, as Unicode leads to certain matters (such
as right-to-left scripts) which developers need to be aware of, and there being
one probably minor bug in how sorting values are generated (which leads to
more blocks being read than would otherwise need to be).

The float4 and float8 types derive their sorting values by using the integer
part only of the value, which leads to fractional percentages (values in the range
0 to 1) all having the same sorting value (except of course for 1.0, but that hardly
saves you :-), and which also leads to clamping, where values which are below or
above the minimum and maximum sorting value are clamped to the minimum
and maximum sorting values, respectively. It seems to me possible that this
approach might be a serious blunder, and that there is actually a different and
in fact the usual and proper way to sort floats, which simply hasn’t been used.

The numeric type is either eight bytes or sixteen bytes, depending purely on
the DDL. When precision is 19 or less, the numeric will be eight bytes, when
20 or more, sixteen. The sixteen byte form of numeric over the value range of
a signed eight byte integer, uses the lower eight bytes of the value to form the
sorting value; outside of this range, it uses the upper eight bytes. In the former,
behaviour is intuitively correct, but in the latter, each block of 2^64 values has
the same sorting value, and these overlap with the sorting values produced in
the former case.

The timetz data type is highly non-intuitive. Where Redshift does not truly
support timezones, what this type actually does is apply the time-zone to the
time, to convert it to UTC, and then store the UTC time. The time-zone is
thrown away after that, and so there is no way to know the original time-zone of
the time. The problem with this is that if the time-zone moves the time into the
previous or next day, the time simply wraps around. 12:00:00 UTC is stored
as the same value as 14:00:00 UTC+2; and where these times and time-zones
end up with the same value being stored, they naturally end up with the same
sorting value.

Much the same problem is found with timestamptz, where again the time-zone
is not stored, but rather applied to convert the timestamp to UTC (which also
means the date of the timestamp can unexpectedly change), and so different
times in different time-zones end up with the same sorting value. This is prob-
lematic to reason about, and reduces the effectiveness of the Zone Map.

With both the time-zone type data types, I advise they are not used, it’s better
to roll your own solution, using two columns, one for the time-zone and one for
the time/timestamp.
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Unexpected Findings
When you investigate Redshift, there are always unexpected findings.

1. numeric data types with a non-zero scale throw an assert when set to NaN.

Further Questions
1. How are sorting values derived for hllsketch and super types?

Revision History
v1

• Initial release.

v2
• Metadata changes. No content changes.
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Appendix A : Raw Data Dump
Note these results are completely unprocessed; they are a raw dump of the
results, so the original, wholly unprocessed data, is available.

PLEASE NOTE due to technical limitations of the XeLaTeX parser, the raw
results are being processed as raw text. As a result, the Arabic and Katana text
is not being displayed. If you do use the data here, you will need once you have
copied it to insert, for the varchar data type, the missing Arabic text, which
is correctly displayed in the Results section.

{'proofs': {'dc2.large': {2: {'char(64)': [("'MARTINEZ'",
[6504691313660805453,
'5a454e495452414d',
6504691313660805453,
'5a454e495452414d',
1]),

("'MURPHY'",
[98167120090445,
'59485052554d',
2314948375588525389,
'202059485052554d',
1]),

("'abcdefg'",
[29104508263162465,
'67666564636261',
2334947517476856417,
'2067666564636261',
1]),

("'\ttuvwxyz'",
[8825217399293047817,
'7a79787776757409',
8825217399293047817,
'7a79787776757409',
1]),

("'tuvwxyz'",
[34473505465988468,
'7a797877767574',
2340316514679682420,
'207a797877767574',
1]),

("'1234567 1234567'",
[15540725856023089,
'37363534333231',
2321383735069717041,
'2037363534333231',
1]),

("'1234567a1234567'",
[7005127347535032881,
'6137363534333231',
7005127347535032881,
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'6137363534333231',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'date': [("'4713-01-01 BC'",
[-2451507,
'ffffffffffda97cd',
-2451507,
'ffffffffffda97cd',
1]),

("'0001-12-31 BC'",
[-730120,
'fffffffffff4dbf8',
-730120,
'fffffffffff4dbf8',
1]),

("'0001-01-01 AD'",
[-730119,
'fffffffffff4dbf9',
-730119,
'fffffffffff4dbf9',
1]),

("'1999-12-31 AD'",
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

("'2000-01-01 AD'", [0, '0', 0, '0', 1]),
("'2000-01-02 AD'", [1, '1', 1, '1', 1]),
("'5874897-12-31 AD'",
[2145031948,
'7fda970c',
2145031948,
'7fda970c',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'float4': [("'NaN'",
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
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'8000000000000000',
1]),

('-3.402823e+38',
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-9223371761976868352.0',
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-9223371761976868351.0',
[-9223371487098961920,
'8000008000000000',
-9223371487098961920,
'8000008000000000',
1]),

('-1234.56789',
[-1234,
'fffffffffffffb2e',
-1234,
'fffffffffffffb2e',
1]),

('-50.75',
[-50,
'ffffffffffffffce',
-50,
'ffffffffffffffce',
1]),

('-50.0',
[-50,
'ffffffffffffffce',
-50,
'ffffffffffffffce',
1]),

('-1',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('-0.5', [0, '0', 0, '0', 1]),
('0', [0, '0', 0, '0', 1]),
('0.5', [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('50.0', [50, '32', 50, '32', 1]),
('50.75', [50, '32', 50, '32', 1]),
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('1234.56789',
[1234, '4d2', 1234, '4d2', 1]),

('9223371761976868351.0',
[9223371487098961920,
'7fffff8000000000',
9223371487098961920,
'7fffff8000000000',
1]),

('9223371761976868352.0',
[9223372036854775807,
'7fffffffffffffff',
9223372036854775807,
'7fffffffffffffff',
1]),

('3.402823e+38',
[9223372036854775807,
'7fffffffffffffff',
9223372036854775807,
'7fffffffffffffff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'float8': [("'NaN'",
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-1.7e+308',
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-9223372036854775296.0',
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-9223372036854775295.0',
[-9223372036854774784,
'8000000000000400',
-9223372036854774784,
'8000000000000400',
1]),
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('-1234.56789',
[-1234,
'fffffffffffffb2e',
-1234,
'fffffffffffffb2e',
1]),

('-50.75',
[-50,
'ffffffffffffffce',
-50,
'ffffffffffffffce',
1]),

('-50.0',
[-50,
'ffffffffffffffce',
-50,
'ffffffffffffffce',
1]),

('-1',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('-0.5', [0, '0', 0, '0', 1]),
('0', [0, '0', 0, '0', 1]),
('0.5', [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('50.0', [50, '32', 50, '32', 1]),
('50.75', [50, '32', 50, '32', 1]),
('1234.56789',
[1234, '4d2', 1234, '4d2', 1]),

('9223372036854775295.0',
[9223372036854774784,
'7ffffffffffffc00',
9223372036854774784,
'7ffffffffffffc00',
1]),

('9223372036854775296.0',
[9223372036854775807,
'7fffffffffffffff',
9223372036854775807,
'7fffffffffffffff',
1]),

('1.7e+308',
[9223372036854775807,
'7fffffffffffffff',
9223372036854775807,
'7fffffffffffffff',
1]),
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('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'int2': [('-32768',
[-32768,
'ffffffffffff8000',
-32768,
'ffffffffffff8000',
1]),

('-100',
[-100,
'ffffffffffffff9c',
-100,
'ffffffffffffff9c',
1]),

('-1',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('0', [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('100', [100, '64', 100, '64', 1]),
('32767',
[32767, '7fff', 32767, '7fff', 1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'int4': [('-2147483648',
[-2147483648,
'ffffffff80000000',
-2147483648,
'ffffffff80000000',
1]),

('-100',
[-100,
'ffffffffffffff9c',
-100,
'ffffffffffffff9c',
1]),

('-1',
[-1,
'ffffffffffffffff',
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-1,
'ffffffffffffffff',
1]),

('0', [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('100', [100, '64', 100, '64', 1]),
('2147483647',
[2147483647,
'7fffffff',
2147483647,
'7fffffff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'int8': [('-9223372036854775808',
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-100',
[-100,
'ffffffffffffff9c',
-100,
'ffffffffffffff9c',
1]),

('-1',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('0', [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('100', [100, '64', 100, '64', 1]),
('9223372036854775807',
[9223372036854775807,
'7fffffffffffffff',
9223372036854775807,
'7fffffffffffffff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
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1])],
'numeric(18,0)': [('-999999999999999999',

[-999999999999999999,
'f21f494c589c0001',
-999999999999999999,
'f21f494c589c0001',
1]),

('-15',
[-15,
'fffffffffffffff1',
-15,
'fffffffffffffff1',
1]),

('-1',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('0', [0, '0', 0, '0', 1]),
("'NaN'", [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('15', [15, 'f', 15, 'f', 1]),
('999999999999999999',
[999999999999999999,
'de0b6b3a763ffff',
999999999999999999,
'de0b6b3a763ffff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'numeric(18,4)': [('-99999999999999.9999',
[-999999999999999999,
'f21f494c589c0001',
-999999999999999999,
'f21f494c589c0001',
1]),

('-15.5000',
[-155000,
'fffffffffffda288',
-155000,
'fffffffffffda288',
1]),

('-15.0000',
[-150000,
'fffffffffffdb610',
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-150000,
'fffffffffffdb610',
1]),

('-15',
[-150000,
'fffffffffffdb610',
-150000,
'fffffffffffdb610',
1]),

('-1.0000',
[-10000,
'ffffffffffffd8f0',
-10000,
'ffffffffffffd8f0',
1]),

('0.0000', [0, '0', 0, '0', 1]),
('1.0000',
[10000,
'2710',
10000,
'2710',
1]),

('15',
[150000,
'249f0',
150000,
'249f0',
1]),

('15.0000',
[150000,
'249f0',
150000,
'249f0',
1]),

('15.5000',
[155000,
'25d78',
155000,
'25d78',
1]),

('99999999999999.9999',
[999999999999999999,
'de0b6b3a763ffff',
999999999999999999,
'de0b6b3a763ffff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
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'8000000000000000',
1])],

'numeric(38,0)': [('-99999999999999999999999999999999999999',
[-5421010862427522171,
'b4c4b357a5793b85',
-5421010862427522171,
'b4c4b357a5793b85',
1]),

('-36893488147419103233',
[-3,
'fffffffffffffffd',
-3,
'fffffffffffffffd',
1]),

('-36893488147419103232',
[-2,
'fffffffffffffffe',
-2,
'fffffffffffffffe',
1]),

('-18446744073709551617',
[-2,
'fffffffffffffffe',
-2,
'fffffffffffffffe',
1]),

('-18446744073709551616',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('-9223372036854775809',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('-9223372036854775808',
[-9223372036854775808,
'8000000000000000',
-9223372036854775808,
'8000000000000000',
1]),

('-9223372036854775807',
[-9223372036854775807,
'8000000000000001',
-9223372036854775807,
'8000000000000001',
1]),

41



('-15',
[-15,
'fffffffffffffff1',
-15,
'fffffffffffffff1',
1]),

('-1',
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

('0', [0, '0', 0, '0', 1]),
("'NaN'", [0, '0', 0, '0', 1]),
('1', [1, '1', 1, '1', 1]),
('15', [15, 'f', 15, 'f', 1]),
('9223372036854775806',
[9223372036854775806,
'7ffffffffffffffe',
9223372036854775806,
'7ffffffffffffffe',
1]),

('9223372036854775807',
[9223372036854775807,
'7fffffffffffffff',
9223372036854775807,
'7fffffffffffffff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1]),

('9223372036854775808',
[0, '0', 0, '0', 1]),

('18446744073709551615',
[0, '0', 0, '0', 1]),

('18446744073709551616',
[1, '1', 1, '1', 1]),

('36893488147419103231',
[1, '1', 1, '1', 1]),

('36893488147419103232',
[2, '2', 2, '2', 1]),

('99999999999999999999999999999999999999',
[5421010862427522170,
'4b3b4ca85a86c47a',
5421010862427522170,
'4b3b4ca85a86c47a',
1])],
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'time': [("'00:00:00.000000'",
[0, '0', 0, '0', 1]),

("'00:00:00.000001'",
[1, '1', 1, '1', 1]),

("'00:00:01.000000'",
[1000000,
'f4240',
1000000,
'f4240',
1]),

("'00:01:00.000000'",
[60000000,
'3938700',
60000000,
'3938700',
1]),

("'01:00:00.000000'",
[3600000000,
'd693a400',
3600000000,
'd693a400',
1]),

("'23:59:59.999999'",
[86399999999,
'141dd75fff',
86399999999,
'141dd75fff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'timestamp': [("'4713-01-01 00:00:00.000000 BC'",
[-211810204800000000,
'fd0f7fbdaf17e000',
-211810204800000000,
'fd0f7fbdaf17e000',
1]),

("'0001-12-31 23:59:59.999999 BC'",
[-63082281600000001,
'ff1fe2ffc59c5fff',
-63082281600000001,
'ff1fe2ffc59c5fff',
1]),

("'0001-01-01 00:00:00.000000 AD'",
[-63082281600000000,
'ff1fe2ffc59c6000',
-63082281600000000,
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'ff1fe2ffc59c6000',
1]),

("'1999-12-31 23:59:59.999999 AD'",
[-1,
'ffffffffffffffff',
-1,
'ffffffffffffffff',
1]),

("'2000-01-01 00:00:00.000000 AD'",
[0, '0', 0, '0', 1]),

("'2000-01-01 00:00:00.000001 AD'",
[1, '1', 1, '1', 1]),

("'2000-01-01 00:00:01.000000 AD'",
[1000000,
'f4240',
1000000,
'f4240',
1]),

("'2000-01-01 00:01:00.000000 AD'",
[60000000,
'3938700',
60000000,
'3938700',
1]),

("'2000-01-01 01:00:00.000000 AD'",
[3600000000,
'd693a400',
3600000000,
'd693a400',
1]),

("'2000-01-02 00:00:00.000000 AD'",
[86400000000,
'141dd76000',
86400000000,
'141dd76000',
1]),

("'2000-02-01 00:00:00.000000 AD'",
[2678400000000,
'26f9d14a000',
2678400000000,
'26f9d14a000',
1]),

("'2001-01-01 00:00:00.000000 AD'",
[31622400000000,
'1cc2a9eb4000',
31622400000000,
'1cc2a9eb4000',
1]),

("'294276-12-31 23:59:59.999999 "
"AD'",
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[9223371331199999999,
'7fffff5bb3b29fff',
9223371331199999999,
'7fffff5bb3b29fff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'timestamptz': [("'4713-01-01 "
"00:00:00.000000-1459 BC'",
[-211810150860000000,
'fd0f7fca3e2af500',
-211810150860000000,
'fd0f7fca3e2af500',
1]),

("'1999-12-31 23:00:00.000000+0 "
"AD'",
[-3600000000,
'ffffffff296c5c00',
-3600000000,
'ffffffff296c5c00',
1]),

("'2000-01-01 00:00:00.000000+0 "
"AD'",
[0, '0', 0, '0', 1]),

("'2000-01-01 00:00:00.000000+1 "
"AD'",
[-3600000000,
'ffffffff296c5c00',
-3600000000,
'ffffffff296c5c00',
1]),

("'294276-12-31 "
"23:59:59.999999+1459 AD'",
[9223371277259999999,
'7fffff4f249f8aff',
9223371277259999999,
'7fffff4f249f8aff',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1])],

'timetz': [("'00:00:00.000000+0'",
[0, '0', 0, '0', 1]),
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("'00:00:00.000001+0'",
[1, '1', 1, '1', 1]),

("'12:00:00.000000+0'",
[43200000000,
'a0eebb000',
43200000000,
'a0eebb000',
1]),

("'23:59:59.999999+0'",
[86399999999,
'141dd75fff',
86399999999,
'141dd75fff',
1]),

("'22:00:00.000000-4'",
[7200000000,
'1ad274800',
7200000000,
'1ad274800',
1]),

("'02:00:00.000000+0'",
[7200000000,
'1ad274800',
7200000000,
'1ad274800',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
'8000000000000000',
1]),

("'00:00:00.000000-1459'",
[53940000000,
'c8f131500',
53940000000,
'c8f131500',
1]),

("'00:00:00.000000+1459'",
[32460000000,
'78ec44b00',
32460000000,
'78ec44b00',
1])],

'varchar(64)': [("'MARTINEZ'",
[6504691313660805453,
'5a454e495452414d',
6504691313660805453,
'5a454e495452414d',
1]),
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("'MURPHY'",
[98167120090445,
'59485052554d',
2314948375588525389,
'202059485052554d',
1]),

("'abcdefg'",
[29104508263162465,
'67666564636261',
2334947517476856417,
'2067666564636261',
1]),

("'\ttuvwxyz'",
[8825217399293047817,
'7a79787776757409',
8825217399293047817,
'7a79787776757409',
1]),

("'tuvwxyz'",
[34473505465988468,
'7a797877767574',
2340316514679682420,
'207a797877767574',
1]),

("'1234567 1234567'",
[15540725856023089,
'37363534333231',
2321383735069717041,
'2037363534333231',
1]),

("'1234567a1234567'",
[7005127347535032881,
'6137363534333231',
7005127347535032881,
'6137363534333231',
1]),

("'���'",
[-9015182246505446685,
'82e3a382e3a282e3',
-9015182246505446685,
'82e3a382e3a282e3',
1]),

("'���'",
[-9015182246505446685,
'82e3a382e3a282e3',
-9015182246505446685,
'82e3a382e3a282e3',
1]),

("'������ ������� ���� �����'",
[-8441510587424725032,

47



'8ad9bad884d9a7d8',
-8441510587424725032,
'8ad9bad884d9a7d8',
1]),

("'������ ������� ����'",
[-8441510587424725032,
'8ad9bad884d9a7d8',
-8441510587424725032,
'8ad9bad884d9a7d8',
1]),

("'����� ���� ������� ������'",
[-8873914420618022440,
'84d985d9b7d8b1d8',
-8873914420618022440,
'84d985d9b7d8b1d8',
1]),

("'���� ������� ������'",
[-6135964446350530344,
'aad8acd884d9a8d8',
-6135964446350530344,
'aad8acd884d9a8d8',
1]),

("'dark clouds bring'",
[8028901226587513188,
'6f6c63206b726164',
8028901226587513188,
'6f6c63206b726164',
1]),

("'dark clouds bring rain'",
[8028901226587513188,
'6f6c63206b726164',
8028901226587513188,
'6f6c63206b726164',
1]),

("'gnirb sduolc krad'",
[7238164633312915047,
'6473206272696e67',
7238164633312915047,
'6473206272696e67',
1]),

("'niar gnirb sduolc krad'",
[7597123010476206446,
'696e67207261696e',
7597123010476206446,
'696e67207261696e',
1]),

('NULL',
[9223372036854775807,
'7fffffffffffffff',
-9223372036854775808,
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'8000000000000000',
1])]}}},

'tests': {'dc2.large': {2: {}}},
'versions': {'dc2.large': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '

'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '
'Hat 3.4.2-6.fc3), Redshift 1.0.28965'}}}
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