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Abstract

Redshift Serverless is not serverless. A workgroup is a normal, ordinary Redshift cluster.
All workgroups are initially created as a 16 node cluster with 8 slices per node, which is the
default 128 RPU workgroup, and then elastic resized to the size specified by the user. This
is why the original RPU range is 32 to 512 in units of 8 and the default is 128 RPU; the
default is the mid-point of a 4x elastic resize range, and a single node, the smallest possible
change in cluster size, is 8 RPU/slices. 1 RPU is 1 slice. With elastic rather than classic
resize, the greater the change in either direction from the size of the original cluster, the
more inefficiency is introduced into the cluster. As a cluster becomes increasingly larger, it
becomes increasingly computationally inefficient (the largest workgroup has 128 normal data
slices, but 384 of the lesser compute slices), and increasingly under-utilizes disk parallelism.
As a cluster becomes increasingly smaller, it becomes increasingly computationally inefficient
(each data slice must process multiple slices’ worth of data), and incurs increasingly more
disk use overhead with tables. The more recently introduced smaller workgroups, 8 to 24
RPU (inclusive both ends) use a 4 slice node and have two nodes for every 8 RPU. In this
case, the 8 RPU workgroup is initially a 16 node cluster with 8 slices per node, which is
resized to a 2 node cluster with 4 slices per node - a staggering 16x elastic resize; the largest
resize permitted to normal users is 4x; an 8 RPU workgroup, with small tables, uses 256mb
per column rather than the 16mb per column of a native two node cluster. Workgroups have
a fixed number of RPU and require a resize to change this; workgroups do not dynamically
auto-scale RPUs. I was unable to prove it, because AutoWLM is in the way, but I am
categorically of the view that the claims made for Serverless for dynamic auto-scaling are
made on the basis of the well-known and long-established mechanisms of AutoWLM and
Concurrency Scaling Clusters (“CSC”). Finally, it is possible to confidently extrapolate from
the ra3.4xlarge and ra3.16xlarge node types a price as they would be in a provisioned
cluster for the 8 slice node type, of 6.52 USD per hour. Both Provisioned and Serverless
clusters charge per node-second, but Serverless goes to zero cost with zero use. With the
default Serverless workgroup of 128 RPU/16 nodes (avoiding the need to account for the
inefficiencies introduced by elastic resize), one hour of constant use (avoiding the need to
account for the Serverless minimum query charge of 60 seconds of run-time), without CSC
(avoiding the question of how AutoWLM will behave), costs 46.08 USD. A Provisioned
cluster composed of the same nodes costs 104.32 USD; about twice as much. Here we have
to take into consideration the inefficiencies introduced by elastic resize, which become more
severe the more the cluster deviates from 16 NRPU, that Serverless uses AutoWLM, with
all its drawbacks, and which is a black box controlling the use of CSC, with each CSC being
billed at the price of the workgroup, and the 60 second minimum charge. All Serverless costs
(including the charge for Redshift Spectrum S3 access) have been rolled into a single AWS
charge for Serverless, so it is not possible to know what is costing money. It would have been
much better if AWS had simply introduced zero-zero billing on Provisioned clusters. This
would avoid many of the weaknesses and drawbacks of Serverless Redshift, which wholly
unnecessarily devalue the Serverless product, as well as avoiding the duplicity, considerable
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added complexity, end-user confusion, cost in developer time and induced cluster inefficiency
involved in the pretence that Serverless is serverless.
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Introduction
AWS previewed the product “Amazon Redshift Serverless” in 2021-11, which went to GA in
2022-07.

AWS provide a product comparison page, and at 2021 re:Invent, Adam Selipsky, AWS CEO,
introduced Redshift Serverless as one of the four serverless services offered by AWS.

This document first introduces Redshift Serverless, explaining its concepts and how it is operated,
then investigates Serverless, and looks in particular to try to discern the underlying architecture,
so the correct use and actual value of Serverless can be known from and ideally from first
principles.
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Introduction to Redshift Serverless
Every AWS account has, on a per-region basis, a single Redshift Serverless system.

Redshift Serverless operates in terms of two concepts, which AWS have termed workgroups and
namespaces.

A workgroup represents computing resource, a namespace represents data.

Workgroups
You can have as many workgroups as you like (up to the account limit, which begins at 25 but
can be raised). A workgroup is defined by its name and a single parameter, Redshift Processing
Units (RPU from here on in), and a workgroup can have from 8 to 512 RPU, but they increment
in units of 8, so it’s really 1 to 64 units, which I will call Normalized Redshift Processing Units
(NRPU), and usually use instead of RPU as normalized units are more natural and so easier
to use and grasp, and also because I’m not in a marketing department and so have no intrinsic
preference for large numbers.

An RPU is not defined in any way, shape or form, excepting the and the only statement made
about them, in the docs, is that;

One RPU provides 16 GB of memory.

Which means that 1 NRPU is 128 GB of RAM. The same page also gives the general impression
that “more RPU is better”.

Setting higher base capacity improves query performance, especially for data processing
jobs that consume a lot of resources.

There is however no information about how more RPU is better. This leaves open the question,
for example, of whether more RPU means more queries in parallel, or if individual queries go
faster, or both.

Pricing is in fact as we shall see not fully defined by AWS, but AWS present pricing as being
“per-RPU-hour”, and Serverless is defined as a serverless system, so a natural implication is that
NRPU are identical and linear, since you pay the same amount per-RPU no matter how many
you have; this would then imply 4 NRPU is four times as much computing power as 1 NRPU
(whatever computing power is).

The minimum number of NRPU originally was 4, which if the 16 GB figure is correct, is 512 GB
of RAM, and the default number of NRPU was and is 16, which is an extraordinary 2 TB of
RAM. That’s a remarkably large amount and noteworthy amount of memory for a default, and
we will be coming back to this point later in the investigation.

Eights months after GA, the minimum was reduced to 1 NRPU (I suspect because the still high
price of the previous minimum of 4 was discouraging uptake).

A workgroup provides an IP address and port, which are needed to connect to with your SQL
client, but connecting also requires a user name and a database name, which are not provided by
a workgroup; rather, these are provided by the namespace (as you will read in the next section,
which describes namespaces).

To issue queries, you must create a workgroup and assign a namespace to it (more on this
below), which provides you with the full set of IP, port, username and database, to which you
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then connect in the usual way with your usual SQL client, and then issue queries.

Creating a workgroup takes some minutes, plus up to another minute or two after the Redshift
UI reports the workgroup is created before you can actually connect.

The compute capacity of the workgroup, its number of RPUs, is defined when the workgroup is
created.

The term used in the docs and UI for the number of RPU is Base Capacity, which implies that
it is a minimum value. This is not the case. A workgroup when created has the number of RPU
you specify when you create it; no more and no less, and the number of RPU does not change by
itself. If you want to change the number of RPU, you must resize the workgroup, which takes
several minutes, during which time the workgroup goes off-line.

When you’re finished with a workgroup, you delete it, which also takes some minutes.

Workgroups execute queries wholly independently of other workgroups, and they are created,
resized and deleted, wholly independently of other workgroups.

Comparing workgroups to say, AWS Lambda, we see that with Lambda, when you issue a lambda
function, and specify the resource to be allocated to that function and fire it off. That’s it.

With Redshift Serverless, you must create a workgroup, some minutes, which defines the compute
capacity of that workgroup; all queries issued to that workgroup receive that compute capacity,
and when you’re done, you delete the workgroup, some more minutes.

You could then imagine creating a range of workgroups, so you have a range of compute capacities,
and issuing queries to the workgroup with the appropriate compute capacity for the query -
however, this doesn’t work, because - as we will see - only one workgroup at a time can operate
on a given namespace, a namespace being basically being a snapshot (but constrained such that
it can be associated with only a single workgroup at a time).

It must be said at this point that Serverless does not look very serverless.

However, a property typically associated with serverless is dynamic auto-scaling, in some shape
or form, and there are a few allusions in the official docs to auto-scaling - but I must say allusions
because they are nothing strong - and two more concrete, but ambiguous, statements, which we
find in a page about Serverless billing.

First, the allusions;

On the Amazon Redshift Serverless home page, we see this and only this;

Auto-Scaling

Scale resources seamlessly and maintain consistent performance for thousands of
concurrent users as workload demands change or spike with traffic.

On the Billing for Amazon Redshift page, we see this and only this;

As the number of queries increase, Amazon Redshift Serverless scales automatically
to provide consistent performance.

Next, we can see the following claim, on What is Amazon Redshift Serverless?;

Amazon Redshift Serverless automatically provisions data warehouse capacity and
intelligently scales the underlying resources. Amazon Redshift Serverless adjusts ca-
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pacity in seconds to deliver consistently high performance and simplified operations
for even the most demanding and volatile workloads.

Now for the two more concrete statements, which we find in Billing usage notes;

Scaling - The Amazon Redshift Serverless instance may initiate scaling for handling
periods of higher load, in order to maintain consistent performance. Your Amazon
Redshift Serverless billing includes both base compute and scaled capacity at the same
RPU rate.

This is to my eye ambiguous - the final sentence. Does this mean you pay the same rate whether
the workgroup is scaled or not, or does it mean you pay the same rate for scale capacity as you
do for the workgroup?

Scaling down - Amazon Redshift Serverless scales up from its base RPU capacity to
handle periods of higher load. It some cases, RPU capacity can remain at a higher
setting for a period after query load falls. We recommend that you set maximum RPU
hours in the console to guard against unexpected cost.

This then implies it must be the second reading; you pay for scaled capacity at the same rate as
the workgroup.

So, what I’ve quoted above is it. Everything I’ve found about scaling. No details, no character-
ization, no limits, no performance indications, a single implication about pricing. What you’ve
read there is all of the information AWS have provided.

AWS, to my eye, have with Redshift (I have no knowledge of other products) a long and studied
history of obfuscation and profoundly inflated, improper and misleading claims, and so to see
such claims, with no backup, has for me alarm bells going off like the Ectomobile on its first run
to the NYC library.

In any event, what I can say at this point is that however dynamic auto-scaling does work, it
is not via the mechanism of RPUs, as when a workgroup is created, the number of RPUs is
specified and can only be changed manually, by resizing the cluster, which takes several minutes
and takes the cluster off-line.

I will visit this matter and these claims in the Discussion of the test script results.

Namespaces
You can have as many namespaces as you like (up to the account limit, which begins at 25 but
can be raised). A namespace is defined by its name and when created begins almost empty;
it contains a single initialized database with the rdsdb and the admin user, so it contains the
system tables, all the usual functions (thousands of them), and so on - in short, exactly the state
you find in a provisioned Redshift cluster when it is brought up for the first time.

When you create a workgroup, you need to specify a single namespace, and that workgroup will
operate upon the data in that namespace.

A single workgroup works on a single namespace at a time.

Only one workgroup can work on a given namespace at a time.

A namespace however does not require that it is loaded into a workgroup. A namespace can be
unused. However, a workgroup to be started must have a namespace specified.
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A namespace can contain as many databases as Redshift Serverless allows (which is 100, and the
docs state this is a hard limit), and as many tables, schemas, user and so on, as are permitted by
Redshift Serverless (where the limits which are documented are identical to those of provisioned
Redshift, except for the number of databases, which is 100 rather than 60).

It is from the namespace you obtain the database name and user name you need when connecting
with your SQL client to the workgroup which is loaded with that namespace.

Namespaces are created almost instantly, but they take several minutes to delete.

General Operation
Serverless then is operated by creating a workgroup, where creating a workgroup requires spec-
ifying a namespace for the workgroup, and the workgroup will operate on and only on that
namespace, and one and only one workgroup can operate at any given time on a given names-
pace.

A namespace does not have to be in use.

Workgroups are independently sized, and are sized in and only in terms of the number of RPU
they have, where each workgroup has its own IP address, by which it is connected to by SQL
clients.

Creating, re-sizing and deleting a workgroup all take some minutes. A workgroup goes off-line
during a resize.

Creating a namespace is just about instant, but deleting takes some minutes (the duration may
relate to how much data is in the namespace - I’ve not investigated this; all my namespaces have
had almost no data in).

Pricing
All prices are for us-east-1.

With provisioned Redshift, you pay per-node-second, which is to say, you pay for and only for
the number of nodes you have. The number of running queries irrelevant.

With Redshift Serverless billing is not like other serverless systems. If we look at Athena, billing
is per query. If we look at Lambda, it is per Lambda function. With Redshift Serverless, however,
and unexpectedly, billing is not per-query. Billing is in fact per-workgroup-second, where the
price depends on the number of RPU in the workgroup, seemingly regardless of the number of
running queries.

This leaves open the question of how many queries a workgroup can run, and also raises then
the question of scaling - both of which I cannot address here as the results of the investigation
are needed to explain the answers to these questions.

However, if no queries are running, you pay nothing; Serverless does offer zero-zero billing.

Where Serverless stores data in RMS, there is also the RMS price of 2.4 cents per gigabyte per
month, or to put it in more accessible terms, 24.576 USD per terabyte per month. This is as we
shall see almost negligibly cheap compared to the cost of running queries - one hour of 1 NRPU
with 10 queries is one month of 1 terabyte of store.
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There is also a 60 second minimum charge. Any query, or set of queries running in parallel,
where the single queries runs for less than sixty seconds, or the set of queries running in parallel
run for less than 60 seconds, is billed as if it or they ran for 60 seconds.

On a busy workgroup, queries will be running all the time, so the minimum charge will disappear
- the workgroup will always be in use. For an idle or almost idle workgroup, the minimum is
going to be costly if many short single queries are run, which on the face of it seems an unlikely
scenario.

The smallest workgroup, 1 NRPU, used continuously for one hour costs 2.88 USD.

It’s not clear if there is a limit to how many queries can run in parallel, or what happens if that
limit is exceeded.

It is not clear how much compute 1 NRPU is, or the character of that compute - do more NRPU
mean more queries running at the same speed, or does it mean the same number of queries but
they run faster? the docs say nothing.

The smallest possible provisioned cluster, two nodes of dc2.large (never use single node clusters),
costs 0.50 USD per hour, with a larger node type, two nodes of ra3.xlplus, coming in at 2.172
USD per hour.

On a normal cluster you’d be running about 10 queries concurrently.

If Serverless workgroups can also run about 10 queries concurrently, the smallest workgroup costs
as we see something more than the smallest ra3 cluster.

We see multiple but entirely vague claims from AWS about auto-scaling - no details at all. It’s
just about implied that pricing rises as scaling kicks in, that scaling changes the number of RPU
(which it categorically does not - you have to manually resize a cluster to do this), and that the
pricing for scaling is the same as the price of the main workgroup - but what does that actually
mean?

For example, if I have a workgroup running ten queries, will it have scaled or not? if so, by how
much? how “much” of a workgroup is the scaling, if it occurred, so I can figure out the price of
that scaling?

There is no information about this, and the number of RPU in a workgroup is fixed, so this
matter is shrouded in mystery, which is great for a thriller novel but highly inappropriate for a
commercial database offering.

I’m not going to write more than this here, because later on, after we examine the results of the
test script, we will understand auto-scaling and so its pricing, and these matters will become
clear.

System Tables
The large majority of system tables have in Serverless been made inaccessible to both admin and
normal users.

The docs, as ever, contain fragmentary information only.

I originally wrote at length about the failings of the Serverless docs, the length being necessary
to cover all the issues relating to the system tables, but - flogging a dead horse, you know? so I’ve
removed all of that. Suffice to say, the docs are to information what the South African National
Electricity Company is to a stable power supply.
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What I have found is that the PG, most of the SYS and most of the SVV system tables are accessible,
but AWS have to my eye specifically acted to make inaccessible those system tables which provide
information on what Serverless is doing internally, or how.

The system tables which remain accessible provide information about data - about tables, users,
groups, etc - but no information about function - about queries and load and run-times and so
on - so they’re no use to try to understand what’s going on under the hood.

As such we see the STL, STV, SVCS and SVL tables and views all have been made inaccessible
(although I have not tested every view to check, as there are thousands of them, and so this would
be exorbitantly expensive, where queries have a 60 second minimum charge), as have those SVV
views which provide information about what Serverless is doing internally (I did test each SVV
view individually, as there’s only about 60 or so of them).

The PG tables and views come from Postgres and are pretty much all on the leader node, and
contain information about data - tables, users, groups, etc.

The SYS tables are recent, I think were always intended to be for Serverless, and so most are
accessible because they were originally created in a sanitized form (lacking “what and how”
information).

Furthermore, and quite remarkably, on Serverless, AWS have taken the step of censoring the
SQL of all the non-PG system table views which remain - so all the SVV views, and all the SYS
views.

To do this, the SQL function which returns the SQL of a view has been modified such that for
the censored views, this function returns not the SQL of the view but the following;

Error: describing system view <[view_name]> is disabled.

(In provisioned Redshift, this censorship exists only for the SYS views. The source of the SVV
views, these views having existed for many years, can still be seen. I also must note this output
breaks the semantics of the function to display the SQL of a view, since we now have a plain
text error message where there should be and only be DDL - this is however by no means the
first time I’ve seen this type of interface corruption from the devs.)

I am firmly of the view AWS are specifically acting to prevent Serverless users knowing what’s
going on under the hood.

We could think to explain this by saying AWS are looking to automate Serverless and so re-
lieve users from needing to know about such information; however, as we shall see, a different
explanation will after investigation present itself.
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Tests
The tests are almost all scripted, but one test must be performed by hand using psql, as the
Python module psycopg2, which is used by the test script to communicate with Redshift, is
confused by dates prior to 1 AD.

Workgroups when they are created are configured by specifying a value for Redshift Processing
Units (RPU), which ranges from 8 to 512, in units of 8. I have normalized this, to the range 1
to 64, and called this Normalized Redshift Processing Units (NRPU).

The automated tests are split into four sets of tests; two sets of slow tests for Serverless, one set
of fast tests for Serverless, and one set which runs on a provisioned cluster.

(There are two sets of slow tests, rather than one, because I found Serverless and boto3 with
Serverless to be unreliable, which amongst other consequences forced me to eschew concurrent
bring-up/shut-down of multiple workgroups and namespaces and instead serialize bring-up and
shut-down of workgroups and namespaces, which made the test script exceedingly slow - at one
point, nine hours for a single run through, and this with constant intermittent and unexpected
failures - breaking the slow tests into two allowed me during development to move isolate unfin-
ished and/or still unreliable tests from those which were finished or had been made reliable.)

First Set of Slow Tests
1. The first tests time workgroup resize. A 16 NRPU workgroup, the default size, is created,

and then resized, and then deleted. A new namespace is created for each test, and deleted
after the resize is complete. This is repeated seven times, with the resize being to 1, 2, 3,
4, 8, 32 and 64 NRPU.

(Sizes less than 4 are expected to be different in their nature to sizes 4 and above, so all
three sizes less than 4 are being examined.)

The time taken to create (boto3 reports available), and then to actually successfully
connect to, and the time taken to delete, each workgroup, is recorded.

The time taken to create and delete each namespace is also recorded.

2. A 1 NRPU workgroup is created, a test table is created, and then the workgroup is discon-
nected from and left idle for 61 minutes (I determined this duration by prior experimenta-
tion). The workgroup is then connected to, and issued a query on the test able, and then
issued the same query a second time. The time taken to connect, and the time taken to
execute each query, is recorded.

Second Set of Slow Tests
1. A series of new namespace-workgroup pairs are created, the sizes being 1, 2, 3, 4, 8, 16, 32

and 64 NRPU.

The time taken to create (boto3 reports available), and then to actually successfully
connect to, and the time taken to delete, each workgroup, is recorded.

The time taken to create and delete each namespace is also recorded.

Once a workgroup can be connected to, a test table named table_slices is created,
with key distribution and two raw encoding int8 columns, where the first column is an
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identity column, starting at 1 and incrementing by 1 and which is also the distribution
key. 1024 rows are written to the table, which being the single insert after table create will
automatically be sorted, and then the following query is issued;

1. select size from svv_table_info where "table" = 'table_slices';

After this query, I insert to the table using a self-join, with a LIMIT of 250,000 rows, and
issue the following query;

2. select distinct slice_num() as slice from table_slices order by slice;

Finally, the time taken to create and delete each namespace is also recorded.

Docs links;

1. https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_TABLE_INFO.html
2. https://www.redshiftresearchproject.org/system_table_tracker/1.0.55524/pg_cata

log.svv_table_info.html
3. https://docs.aws.amazon.com/redshift/latest/dg/r_SLICE_NUM.html

Fast Tests
1. A single 1 NRPU workgroup is brought up, along with a new namespace.

1. The EXPLAIN query plans are generated for select * from every SYS system table
views. We use these plans to find out which actual tables are being used by these
views (we cannot examine the SQL of these views, as it is censored by AWS). We will
then examine the columns in these tables, so see what we find.

2. Every SVV system table is tested to see if it is accessible.

Provisioned Tests
1. A four node ra3.xlplus provisioned cluster is created.

Once the cluster can be connected to, the following query is issued, together info about
nodes and slices;

1. select node, slice, localslice, case when type = 'C' then 'compute'
when type = 'D' then 'data' end as type from stv_slices order by node,
slice;

Then, exactly as performed in the slow workgroup tests, a test table named table_slices
is created, with key distribution and two raw encoding int8 columns, where the first column
is an identity column, starting at 1 and incrementing by 1 and which is also the distribution
key. 1024 rows are written to the table, which being the single insert after table create will
automatically be sorted, and then the following query is issued;

2. select size from svv_table_info where "table" = 'table_slices';

After this query, I insert to the table using a self-join, with a LIMIT of 250,000 rows, and
issue the following query;

3. select distinct slice_num() as slice from table_slices order by slice;

The cluster is then resized to two nodes, and the first and third queries are re-issued (the
second query is not re-issued, because adding 250k rows changes the result, but since we
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repeat the whole test, but starting with two nodes and then resizing to four, we get to find
the result of the second query on two nodes anyway).

The above tests are repeated, but starting with a two node cluster, which is then resized to a
four node cluster.

Manual Tests
1. Create a 2 node dc2.large cluster.

In normal Redshift clusters, leader nodes and worker nodes print dates prior to 1 AD
differently.

This query, select '0100-01-01 BC'::date, runs on the leader node and prints an
AD/BC format date.

This query, select '0100-01-01 BC'::date from table_1;, runs on the worker nodes
and prints an ISO 8601 format date. (The table table_1, with a single for for convenience,
must first be created, like so, create table table_1 as select 1;.

The manual tests then are to bring up a 2 node dc2.large cluster, and run these queries,
recording their output, and then to repeat, but on a 1 NRPU workgroup.
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Results
First Set of Slow Tests
Resize Times (in seconds)

Resize in all cases is from 16 NRPU to the target size in the NRPU column.

NRPU Available Connect
64 221.70308017730713 1.1366949081420898
32 290.20202445983887 1.7749905586242676
8 307.84038615226746 2.2486279010772705
4 237.87361240386963 2.4608988761901855
3 223.4217014312744 1.3041656017303467
2 214.12547516822815 2.4654417037963867
1 261.23654770851135 1.3217377662658691

Additional Workgroup Times for 16 NRPU (in seconds)

For the seven 16 NRPU workgroups created for the resize tests.

NRPU Available Connect
16 142.00040555000305 42.092533111572266
16 158.3465723991394 8.1436448097229
16 122.82265400886536 40.22297286987305
16 124.32334208488464 75.41635346412659
16 127.80255341529846 104.72378063201904
16 127.83186173439026 93.99888372421265
16 127.59397530555725 5.925532102584839

Additional Namespace Times for 16 NRPU (in seconds)

For the seven 16 NRPU workgroups created for the resize tests.

NRPU Create Delete
16 0.5747129917144775 195.5482771396637
16 0.2790834903717041 537.4131038188934
16 0.37318849563598633 267.475439786911
16 0.30323123931884766 264.1939504146576
16 0.41089797019958496 149.59405493736267
16 0.2731807231903076 146.12539196014404
16 0.409212589263916 302.38894510269165

Connection and Query Times for Idle Workgroup

Wait duration (in minutes) = 61.000004458427426
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Event Duration (seconds)
Connection 2.052560806274414
First query 27.26804208755493
Second query 0.12465095520019531

Debug output from test script, when attempting to delete namespace workgroup immediately
after idle workgroup test;

Output
# The Cluster Idle Test…
delete_workgroup( wg-u5-1 )
Failed to delete workgroup, attempt 1, error An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There is an operation running on the workgroup. Try
to delete it later.
Failed to delete workgroup, attempt 2, error An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There is an operation running on the workgroup. Try
to delete it later.
Failed to delete workgroup, attempt 3, error An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There is an operation running on the workgroup. Try
to delete it later.
Failed to delete workgroup, attempt 4, error An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There is an operation running on the workgroup. Try
to delete it later.

Second Set of Slow Tests
Workgroup Times (in seconds)

NRPU Available Connect Shutdown
64 162.94810509681702 36.03853249549866 149.57489109039307
32 158.84450340270996 3.484558582305908 277.4090383052826
16 122.33415484428406 23.383538246154785 164.1367542743683
8 121.4271936416626 69.81401205062866 184.42388319969177
4 122.49102735519409 79.7402982711792 238.34082007408142
3 153.5724790096283 78.02273607254028 284.17035365104675
2 120.54271459579468 15.95941710472107 57.93810534477234
1 116.43005561828613 22.12782907485962 314.46830320358276

Namespace Times (in seconds)

NRPU Create Delete
64 2.6436049938201904 139.958984375
32 0.2426462173461914 154.62592577934265
16 0.3628230094909668 197.90971612930298
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NRPU Create Delete
8 0.40954065322875977 130.91410112380981
4 0.38789892196655273 663.5637822151184
3 0.4128589630126953 225.63704991340637
2 0.28119683265686035 469.62274193763733
1 0.27158045768737793 190.16908884048462

Slices

NRPU # slices min max slice numbers
64 96 2 503 2, 4, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24,

31, 34, 38, 40, 42, 47, 48, 50, 52, 54, 56,
62, 64, 66, 68, 71, 72, 74, 76, 78, 80, 82,
84, 88, 90, 92, 94, 96, 97, 99, 104, 107,
112, 115, 117, 118, 120, 124, 126, 128, 148,
151, 161, 173, 176, 203, 206, 210, 212, 215,
223, 225, 229, 236, 237, 260, 261, 266, 274,
286, 302, 304, 308, 312, 314, 326, 341, 345,
375, 390, 411, 428, 429, 434, 435, 448, 452,
455, 458, 460, 464, 475, 497, 503

32 106 0 254 0, 2, 5, 7, 8, 10, 12, 13, 15, 16, 19, 20, 22,
27, 30, 32, 40, 44, 46, 48, 49, 50, 52, 53,
56, 58, 60, 61, 64, 65, 66, 69, 70, 72, 73,
78, 80, 84, 85, 88, 93, 97, 98, 100, 101,
105, 109, 113, 114, 116, 118, 120, 121, 124,
125, 126, 128, 132, 134, 138, 139, 141, 146,
150, 154, 155, 156, 157, 158, 160, 161, 165,
166, 167, 168, 169, 175, 177, 194, 196, 199,
202, 205, 206, 207, 209, 210, 213, 215, 216,
218, 222, 223, 226, 230, 232, 234, 236, 237,
238, 240, 243, 244, 247, 248, 254

16 95 0 127 0, 1, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17,
20, 21, 22, 26, 27, 28, 29, 30, 31, 33, 35,
36, 37, 38, 39, 40, 42, 43, 46, 47, 50, 51,
52, 54, 55, 58, 59, 61, 62, 63, 64, 66, 67,
68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80,
82, 83, 84, 85, 86, 87, 88, 91, 93, 94, 95,
96, 97, 99, 100, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 113, 114, 115, 116,
117, 118, 119, 121, 122, 125, 126, 127

8 58 0 119 0, 1, 2, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22,
23, 32, 33, 34, 35, 38, 39, 48, 49, 50, 51,
52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70,
71, 80, 81, 82, 83, 84, 85, 86, 96, 97, 98,
99, 100, 101, 102, 103, 112, 113, 115, 116,
117, 118, 119
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NRPU # slices min max slice numbers
4 28 0 101 0, 1, 2, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38,

39, 64, 65, 66, 67, 68, 69, 70, 71, 96, 97,
99, 100, 101

3 24 0 110 0, 1, 2, 3, 22, 23, 24, 25, 44, 45, 46, 47, 65,
66, 67, 68, 86, 87, 88, 89, 107, 108, 109,
110

2 16 0 99 0, 1, 2, 3, 32, 33, 34, 35, 64, 65, 66, 67, 96,
97, 98, 99

1 8 0 67 0, 1, 2, 3, 64, 65, 66, 67

Blocks

There are 5 columns and 2 segments (sorted and unsorted), the test data generates one block
per column, per segment, per slice, so the number of data slices is the number of blocks divided
by 10 (i.e. 5*2).

NRPU # blocks ∴ # data slices
64 1280 128
32 1280 128
16 1280 128
8 1280 128
4 1280 128
3 1280 128
2 1280 128
1 1280 128

Fast Tests
Accessible SVV System Tables

Name Accessible
svv_all_columns True
svv_all_schemas True
svv_all_tables True
svv_alter_table_recommendations True
svv_attached_masking_policy True
svv_column_privileges True
svv_columns True
svv_database_privileges True
svv_datashare_consumers True
svv_datashare_objects True
svv_datashare_privileges True
svv_datashares True
svv_default_privileges True
svv_diskusage False
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Name Accessible
svv_external_columns True
svv_external_databases True
svv_external_partitions True
svv_external_schemas True
svv_external_tables True
svv_function_privileges True
svv_geography_columns False
svv_geometry_columns False
svv_iam_privileges False
svv_identity_providers True
svv_integration True
svv_interleaved_columns True
svv_language_privileges True
svv_masking_policy True
svv_ml_model_info True
svv_ml_model_privileges True
svv_mv_dependency True
svv_mv_info True
svv_query_inflight False
svv_query_state False
svv_redshift_columns True
svv_redshift_databases True
svv_redshift_functions True
svv_redshift_schemas True
svv_redshift_tables True
svv_relation_privileges True
svv_restore_table_state False
svv_rls_applied_policy False
svv_rls_attached_policy True
svv_rls_policy True
svv_rls_relation True
svv_role_grants True
svv_roles True
svv_schema_privileges True
svv_schema_quota_state False
svv_sem_usage False
svv_sem_usage_leader False
svv_system_privileges True
svv_table_info True
svv_tables True
svv_transactions True
svv_user_grants True
svv_user_info True
svv_vacuum_progress False
svv_vacuum_summary False
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Dependencies for SYS System Tables

System Table Depends Upon
sys_connection_log stll_connection_log
sys_copy_job pg_auto_copy_job
sys_datashare_change_log stll_datashare_changes_producer,

stll_datashare_changes_consumer
sys_datashare_usage_consumer stll_datashare_request_consumer
sys_datashare_usage_producer stll_datashare_request_producer
sys_external_query_detail stll_external_query_detail_base
sys_integration_activity stll_integration_log
sys_integration_table_state stv_integration_table_state
sys_load_detail stll_load_commits, stll_user_query_map
sys_load_error_detail stll_user_load_error_detail,

stll_load_history_base,
stv_user_query_state

sys_load_history stll_load_history_base,
stv_user_query_state

sys_query_detail stll_query_detail, stv_exec_state,
stv_user_query_map

sys_query_history stll_user_query_history,
stv_user_query_state

sys_query_text stll_user_query_text
sys_serverless_usage stll_arcadia_billing_log,

stll_arcadia_billing_ris_reports,
stll_cluster_blocks_stats,
stll_xregion_metering

sys_spectrum_scan_error stll_spectrum_scan_error, stll_query_detail
sys_stream_scan_errors stll_kinesis_scan_errors,

stll_kafka_scan_errors
sys_stream_scan_states stll_kinesis_scan_states,

stll_kafka_scan_states
sys_unload_detail stll_unload_log, stll_user_query_map
sys_unload_history stll_unload_history_base,

stv_user_query_state

Provisioned Tests
Four Node Original Cluster

Nodes/Slices/Type

Node Slice Type
0 0 data
0 1 data
1 2 data
1 3 data
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Node Slice Type
2 4 data
2 5 data
3 6 data
3 7 data

Slices Participating in Test Query

Slices
0, 1, 2, 3, 4, 5, 6, 7

Block Size of Test Table

Blocks
80

Resized Four->Two Node Cluster

Nodes/Slices/Type

Node Slice Type
0 0 data
0 1 data
0 6 data
0 7 data
1 2 data
1 3 data
1 4 data
1 5 data

Slices Participating in Test Query

Slices
0, 1, 2, 3

Two Node Original Cluster

Nodes/Slices/Type

Node Slice Type
0 0 data
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Node Slice Type
0 1 data
1 2 data
1 3 data

Slices Participating in Test Query

Slices
0, 1, 2, 3

Block Size of Test Table

Blocks
40

Resized Two->Four Node Cluster

Nodes/Slices/Type

Node Slice Type
0 0 data
0 4 compute
1 2 data
1 5 compute
2 1 data
2 6 compute
3 3 data
3 7 compute

Slices Participating in Test Query

Slices
1, 3, 4, 5

Manual Tests
Provisioned

1. A two node dc2.large provisioned cluster was created.

2. The query select '0100-01-01 BC'::date; was issued.

3. The result was;
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date
---------------
0100-01-01 BC

3. The query create table table_1 as select 1; is issued, to create a Redshift table.

4. The query select '0100-01-01 BC'::date from table_1; was issued.

5. The result was;

date
------------
-099-01-01

Serverless

1. A 1 NRPU Serverless workgroup was created.

2. The query select '0100-01-01 BC'::date; was issued.

3. The result was;

date
---------------
0100-01-01 BC

3. The query create table table_1 as select 1; is issued, to create a Redshift table.

4. The query select '0100-01-01 BC'::date from table_1; was issued.

5. The result was;

date
------------
-099-01-01
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Discussion
Primary Evidence
Workgroups

Workgroups take some, and sometimes several, minutes to create and to delete, as far as is
indicated by the status returned by boto3, but then also usually take a minute or so for a
connection to actually be possible, which rather belies the available state - if I can’t connect,
the workgroup isn’t very available. As such, when creating a workgroup, you cannot rely on
the available status code returned by boto3 - if you see that status, and then try to connect,
normally your connection will fail. You need to loop on the connect attempt, until it succeeds.

The times in the test run given below are unusually lacking in shutdown duration outliers. Usually
there has been a shutdown which is 600 or more seconds.

NRPU Available Connect Shutdown
64 162.94810509681702 36.03853249549866 149.57489109039307
32 158.84450340270996 3.484558582305908 277.4090383052826
16 122.33415484428406 23.383538246154785 164.1367542743683
8 121.4271936416626 69.81401205062866 184.42388319969177
4 122.49102735519409 79.7402982711792 238.34082007408142
3 153.5724790096283 78.02273607254028 284.17035365104675
2 120.54271459579468 15.95941710472107 57.93810534477234
1 116.43005561828613 22.12782907485962 314.46830320358276

Workgroups likewise take some, and sometimes several, minutes to resize.

The time taken to create a workgroup is pretty consistent, but the time before a connection can
be made, and the time taken to delete a workgroup, are quite variable.

The following table shows the startup and connect times for the seven 16 NRPU workgroups
brought up for the resize tests. The shutdown time is not shown, because the workgroup has by
then been resized, which makes those workgroups different to those in the table above (which
have not been resized).

NRPU Available Connect
16 142.00040555000305 42.092533111572266
16 158.3465723991394 8.1436448097229
16 122.82265400886536 40.22297286987305
16 124.32334208488464 75.41635346412659
16 127.80255341529846 104.72378063201904
16 127.83186173439026 93.99888372421265
16 127.59397530555725 5.925532102584839

We can see here delay after boto3 reports available and being able to actually connect, is quite
variable.

24



When a workgroup is created, the computing power assigned to the workgroup is specified, in
terms of Redshift Processing Units (RPUs), and this can only be changed by a workgroup resize,
which takes the workgroup off-line.

Be absolutely clear - RPUs are not dynamic.

Resize, like creation, takes some minutes (the times below are in seconds), but the time taken to
connect after a resize is very short.

NRPU Available Connect
64 221.70308017730713 1.1366949081420898
32 290.20202445983887 1.7749905586242676
8 307.84038615226746 2.2486279010772705
4 237.87361240386963 2.4608988761901855
3 223.4217014312744 1.3041656017303467
2 214.12547516822815 2.4654417037963867
1 261.23654770851135 1.3217377662658691

In this table, the original workgroup is 16 NRPU, and it is then resized to the size given in the
NRPU column.

Resize times are pretty consistent, and connect times look to be almost immediate - but on fact,
as we see later, there is a connection proxy in front of the cluster, and I think what’s happening
here is that the connection is so fast because it is to the proxy, where in fact the cluster isn’t
yet ready for queries, and if I had issued a query, it would have been tens of seconds (the usual
durations for a connection to a workgroup being brought up from scratch) until the query ran.

Workgroups are wholly independent of each other; each workgroup has its own IP address, which
users connect to and into which they issue queries, and each workgroup executes queries its own
resources only.

Now, in a serverless system, we would - like Lambda - specify the compute required for a query
and issue the query. We would have no knowledge of servers, only of the specific query we issued.

What we actually have, with Redshift Serverless, is a much coarser granularity; we specify the
compute when we provision a workgroup, and queries issued to that workgroup get the compute
we specified for that workgroup, and all queries into that workgroup must then in some way
competing for the fixed compute in that workgroup, unless we imagine auto-scaling, which AWS
vaguely allude to but otherwise provide no information.

Additionally, a namespace can be operated on by and only by a single workgroup at a time; so
the compute available for a given namespace can be varied only by resizing the workgroup to
which a namespace is currently assigned, or by shutting down the existing workgroup, and then
assigning the namespace to another workgroup.

So; with Redshift Serverless, we create a workgroup, which takes some time, and at creation we
specify its compute capability, which can only be changed by a resize, which also takes some time
and takes the workgroup off-line, and when the workgroup is created we assign it a namespace
(the data the workgroup works on), where only one workgroup can be assigned a given namespace
at a time, and we issue queries into the workgroup, and that workgroup handles those queries
using its own resources only, in the manner it sees fit. Deleting the workgroup also takes some
time.
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I am reminded of the saying - if it looks like a duck, swims like a duck, and quacks like a duck,
then it probably is a duck; this looks awfully like a server.

Now on to the smoking weaponry.

Leader Node and Worker Node

This test result is a (but not the) smoking gun.

With provisioned Redshift, there are in a cluster a single leader node, and between 2 and 128
worker nodes (the maximum number varies by node type).

Users when they connect to a cluster are in fact connecting to the leader node, and as such users
issue queries to the leader node, which orchestrates the work required to complete the queries,
which typically involves distributing work to, and directing the work done, by the worker nodes.

The worker nodes return the results of their individual work to the leader node, which then
performs any final processing, and then finally the leader node returns the results to the user.

The leader node began as Postgres 8 and retains what looks like all of the original functionality,
plus now all the new functionality needed to operate worker nodes.

The worker nodes look to be a wholly different code base, not derived from Postgres, and quite
minimal in their functionality, and although of course adhering to the SQL specification.

As such, there are implementation and behavioural differences between the leader node and the
worker nodes.

One of these differences is a simple, easy and reliable way to differentiate between the leader
node and worker nodes; leader nodes and worker nodes emit different output formats for dates
prior to 1 AD.

This is because the leader node is as Postgres does using the AD/BC format, where there is no
year 0 and dates are written with a positive number for years but a BC indicator for years prior
to 1 AD), e.g. 4000-01-01 BC, but the worker nodes are instead using the ISO 8601 standard,
where there is a year 0, and dates are written where years can be a negative number and there
is no BC indicator, e.g. -3999-01-01.

When issuing a query to a provisioned Redshift cluster, it will by default run on and only on the
leader node. A query runs on worker nodes when and only when the query uses functionality on
the worker nodes, such as reading tables created by users.

As such, the following query as it uses no functionality on the worker nodes runs on and only
on the leader node, the output here being from a two node dc2.large cluster, which we see
producing the AD/BC format output expected of the leader node.

dev=# select '0100-01-01 BC'::date;
date

---------------
0100-01-01 BC

(1 row)

The next query uses a Redshift table created by a user, which as with all user created tables is
on the worker nodes, and so this query runs on the worker nodes, and we see the output is now
in the ISO 8601 format;
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dev=# create table table_1 as select 1;
SELECT
dev=# select '0100-01-01 BC'::date from table_1;

date
------------
-099-01-01

(1 row)

Now here’s a smoking gun - these two queries, issued on a Serverless workgroup, produce the
same results as when issued on provisioned Redshift.

The following two queries were run, manually, on a 1 NRPU workgroup.

dev=# select '0100-01-01 BC'::date;
date

---------------
0100-01-01 BC

(1 row)

dev=# create table table_1 as select 1;
SELECT
dev=# select '0100-01-01 BC'::date from table_1;

date
------------
-099-01-01

(1 row)

Why on earth would a serverless Redshift behave in this way?

We could of course imagine some explanation for this, where the design of Redshift Serverless
is such that each workgroup still has a leader node and worker nodes, and queries are routed
between them in exactly the same way as a provisioned Redshift cluster, and also as we have
already seen, that workgroups take time to create, have fixed compute resources, take time to
resize and delete, work on a single namespace at a time only, and decide for themselves how
to handle concurrent queries issued to them, and do so only with their own compute resource -
but that somehow, despite all this, there is something, somewhere, which we have yet to detect,
which makes workgroups serverless.

Or we can, much more simply, begin to imagine that a workgroup is an ordinary, normal Redshift
cluster.

This is as I say, a smoking gun. It is not enough by itself, but it will not need to be.

Slices

Now we come to the smoking howitzer.

Introductory Concepts To begin with, I need to explain a certain number of fundamental
Redshift concepts, so the test results can be explained and understood.

In Provisioned Redshift, a cluster is composed of nodes, where a node is a virtual machine - an
EC2 instance (although I think of specifications not available to normal users).
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A provisioned cluster contains one and only one leader node, and two or more worker nodes
(actually, you can have a one node cluster, but don’t - they’re strange things and should not be
used).

The leader node runs the show, and the worker nodes do most of the heavy lifting.

The leader node receives all queries, returns all query results, and organizes and directs the work
of the worker nodes.

The leader node began as Postgres 8 and retains what looks like all of the original functionality,
plus now all the new functionality needed to operate worker nodes.

The worker nodes look to be a wholly different code base, not derived from Postgres, and quite
minimal in their functionality, and although of course adhering to the SQL specification.

As such, there are implementation and behavioural differences between the leader node and the
worker nodes.

When issuing a query to a provisioned Redshift cluster, it will by default run on and only on the
leader node. A query runs on worker nodes when and only when the query uses functionality on
the worker nodes, such as reading tables created by users.

When worker nodes are required (for example, the query uses data from tables created by users,
for those tables are stored on worker nodes) the query is converted to multiple C++ files, each of
which is compiled, each of which produces an executable, and those executables are distributed
to each worker node, and each node runs multiple copies of the full set of executables - each
running copy of the full set of executables is known as a slice - and each slice owns a portion of
each table and performs its work on its portion of each table.

Different worker node types have different numbers of slices.

A cluster is configured by its admin to run a maximum number of queries concurrently - ten
is usually a good choice. (To give perspective, the absolute maximum is 50, which would be a
terribly bad idea, as each query would have far too little memory and you would have staggeringly
large amounts of swapping to disk.)

So, bringing this together, if we have a 4 node cluster which is configured to allow 10 concurrent
queries, and each query has say 5 executables, and there are 4 slices on a node, a node will be
running 10 * 5 * 4 = 200 processes per node, so 800 in total, at any one time.

Importantly, as we shall see, so keep it in mind, slices are sequentially numbered, from 0 to the
total number of slices; a cluster with 4 nodes of 2 slices has slices 0 to 7.

Now, originally, only the slice which stored a row could access that row. These days, any slice
on a node can access the data stored by other slices.

This new found flexibility on the face of it seems at times to be improperly used. It’s not
uncommon to see a slice process no rows at all, while another slice processes twice as many,
which to my eye looks like a mistake. In any event, I will say, Redshift under the hood has a lot
of variability, once you start looking in detail at what’s going on. Normally users have no idea
or awareness of this; they issue queries, results come out. That the query might have executed
twice as quickly is not something which is apparent.

Variability in slice use is as we shall see important, so keep that in the back of your mind, too.
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Now, in Serverless Redshift, it would be interesting to see if nodes and slices are still in use, and
if so, how they are being used.

The normal way in which I would look to see what’s going on under the hood is to examine the
system tables - a very large group of tables and views, in the pg_catalog schema, which contain
information about the workgroup or cluster.

AWS have however in Serverless removed the large majority of system tables, censored the SQL
of the views which do remain (so you cannot view the SQL of the view), and have specifically
removed from the views all columns which carry information about nodes and slices.

You might think that this has been done because nodes and slices no longer exist, but these
columns in fact still exist in the underlying tables the views are using; they’ve been removed
from the views only.

(Both admin and normal users do not have permission to access rows in the underlying tables,
but the columns in those tables can be seen from the system tables - that’s a Postgres behaviour,
and I think is impossible to prevent.)

So, given the censoring of the system tables, I need to find side-channels by which to gather such
information as I can.

Fortunately, AWS appear to have overlooked a function in Redshift, [slice_num()].

The docs assert this function returns the slice number a row is held upon. I think this description
was probably always wrong, and in fact the function always returned the slice number of the
slice which processes a row, but back in the day, the only slice which could process a row was
the slice which held the row on disk. These days that’s no longer true, so the slice number can
vary over different runs of the same query, as slices can now read rows held by other slices.

As such slice_num() is an imprecise tool, but it does give us some sort of insight into slices -
such as whether they even exist - and the mere existence of slices raises serious questions, because
slices are so fundamental a concept integral to provisioned Redshift; slices run on nodes, nodes
form a cluster.

Moving on from explaining about slices, we come to the next three introductory concepts, which
are closely related and so presented together; elastic resize, compute slices, and data slices.

Historically, provisioned Redshift of course allowed the cluster to be resized and to do so offered
what is now known as classic resize. With this resize, a new cluster is created with the new
number of nodes, each naturally with the number of slices indicates in its specification, and
every row from the existing cluster is copied over to, and redistributed upon, the new cluster.
This takes forever, but you then have a new cluster with none of the (many) drawbacks of elastic
resize.

Where classic resize takes forever, elastic resize was introduced.

Elastic resize changes the number of nodes, but does not change the number of slices.

So, nodes are added to, or removed from, the existing cluster, and the existing slices are redis-
tributed en bloc over the new set of nodes, and this is very fast - it’s just a bulk copy operation
of data from S3, not a row-by-row redistribution of data.

(You can then end up with different numbers of slices on each node, which is not ideal, because
nodes with more slices complete queries more slowly, and a query runs as slowly as the slowest
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slice - but there’s some nuance here about the exact mechanism by which performance suffers,
which I’ll get to shortly.)

With classic resize, you can move from any number of nodes, to any other number of nodes
(assuming you have enough storage for your data, of course).

With elastic resize, there are limit on how far you can move from your original number of nodes,
because elastic resize does not change the number of slices - it only redistributes the slices you
have; so obviously you cannot have less than one slice per node, nor are you allowed to have too
many slices per node.

A node however no matter how many slices it holds always runs and only runs the number of
slices which are given in its hardware specification.

So if you have a node which by its specification has 4 slices, and due to an elastic resize it now
holds 8, in fact only 4 slices will actually run (remembering here that a slice is a full set of the
executables for a query).

I’ve not looked closely, but what must be happening is that each slice is reading the data which
belongs to two slices, which halves performance, which is what you’d generally expect given you
now have half as many nodes.

This makes good sense, because if you double the memory pressure on a node, by running twice
as many slices, you are likely to cause a very great deal of swapping to disk and performance
will fall off a cliff-edge.

Better to read two lots of data without swapping, than have twice as many slices and each reading
one lot of data.

We can see now from this how having uneven numbers of slices on nodes causes a performance
problem; one or more nodes in a cluster, those which have ended up with more slices than the
other nodes, will find their slices need to read more slices worth of data, than the other nodes.

Queries run as quickly as the slowest slice, because a query cannot complete until all slices
participating in the query have finished their part of the work for that query (and normally all
slices participate in all queries), so any imbalance in node performance renders a cluster as slow
as slowest node.

Also, there are efficiency losses in reading multiple lots of data; I’ve not investigated this, so this
is my expectation based on my understanding of Redshift, but broadly speaking, all other things
being equal, every doubling of the number of slices worth of data doubles the number of disk
seeks.

Small nodes types are allowed at most a 2x resize (so to half the number, or double the number,
of the original number of nodes), and large node types a 4x resize (so to a quarter of, or up to
quadruple, the number of nodes of the original cluster).

So in the worse case, you’re looking at 4x disk seeks.

By and large, although I’ve not investigated and with Redshift you know nothing until you’ve
actually looked, I’m not particularly worried about this increase in the number of disk seeks -
Redshift is intended for Big Data, and so uses min-max culling (aka “the Zone Map”) and has
no support for indexes. Correctly operated Redshift is not a seek-heavy database.

(This contrasts with Redshift when it is operated incorrectly, and you’re using hash joins without
enough memory, and so start swapping heavily, because that is seek heavy.)
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This leads us to the final introductory concept, that there are these days two types of slice, what
AWS call compute slices and data slices.

Until fairly recently, there was only one type of slice, which is the type now known as a data
slice.

A data slice is the standard, full-fat slice. It holds data on disk, and it participates in all step
types (a step is the atomic operation of work in Redshift, there’s about forty of them - such as
scanning a table, aggregating, reading from the network, etc).

After some time, and I think (I’ve not specifically checked, as I never use elastic resize) only on
ra3 node types, a second type of slice was introduced - what AWS call a compute slice, with the
original slice now being termed a data slice.

A compute slice is a filler. It does not hold data on disk (but it can still read data held by data
slices on the same node), and last I heard (and that’s quite recently) participates in only some
(I think only a few, but I’ve not investigated) types of step.

When a cluster is first made, all slices are data slices, and every node holds the number of slices
as given in its specification.

When an elastic resize occurs and the cluster becomes smaller than the original size, those data
slices are crammed onto the smaller number of nodes, but they all are still data slices, and so
there are only data slices in the cluster.

However, when an elastic resize occurs and the number of nodes becomes larger than the original
number of nodes in the cluster, then the number of slices on each node will be less than the
specified number of slices for the node type.

In that situation, what happens then these days is that the missing slices are filled in by compute
slices. Where compute slices have no data associated with them, the cluster can just spin them
up at will - no need to move data about.

Compute slices are better than having no slice at all, but I think (not investigated, only reliable
rumours, so no promises yet) they’re a long way from being a real slice.

I’ve put a test, demonstrating data and compute slices on a provisioned cluster, in the test script,
and we can here examine the output of that test.

First, we make a two node cluster, of ra3.xplus, which has two slices per node, and we examine
the nodes, slices and slice types, and we get as expected two data slices per node.

Node Slice Type
0 0 data
0 1 data
1 2 data
1 3 data

Then we resize to four nodes. Now we see this (the four data slices are now distributed over four
nodes, and the compute slices have filled the gaps);
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Node Slice Type
0 0 data
0 4 compute
1 2 data
1 5 compute
2 1 data
2 6 compute
3 3 data
3 7 compute

But if we make a four node cluster in the first place, no resize, we get this (two data slices per
node);

Node Slice Type
0 0 data
0 1 data
1 2 data
1 3 data
2 4 data
2 5 data
3 6 data
3 7 data

And just for completeness, if we resize a four node cluster to two nodes, we get this - same
number of data slices, but now only two nodes;

Node Slice Type
0 0 data
0 1 data
0 6 data
0 7 data
1 2 data
1 3 data
1 4 data
1 5 data

We’re now onto the final introductory concept, how data is stored on disk, and this is important,
because as we will see, it provides a second and independent method of proof which corroborates
the findings from slice_num().

In Redshift, all disk I/O is in one megabyte blocks - which I will refer to simply as blocks.

You cannot write less than one block, no matter what you’re doing. It’s always one block or
more, and I/O operations are conducted accordingly.

So for example when you write a single row, you’re actually writing one block - with a single row
in.
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Additionally, remember that Redshift is column-store; so each column is, in effect, stored in its
own file (not strictly how it’s actually managed, but the exact implementation isn’t needed here
and what I’ll write about it is accurate in terms of what’s going on with blocks).

So when you write a single row, you’re actually writing one block per column, because each
column is a separate file, and all disk I/O is in blocks.

Finally, remember that Redshift is a sorted database, and so every table in fact consists of two
segments, a sorted segment and an unsorted segment. When new rows are added, to go into
the unsorted segment. The VACUUM command converts unsorted rows into sorted rows (and so
converts unsorted blocks into sorted blocks).

Now, when a table is completely new and empty, it has no blocks on disk at all, but as soon as
you write the first row, you get one block per segment, even though one of the segments is empty,
and that’s also one block for each segment per column, because the columns each have their own
file.

You can sense already this is all going to become quite a lot of blocks, right? :-)

(In fact, the first addition of rows to a completely new, or freshly truncated, table goes into the
sorted segment. This is because when rows are added, which is by INSERT or COPY, the rows
added are sorted with respect to themselves, and then added to the table. If the table is wholly
new or freshly truncated, those new rows become the sorted segment, and an empty unsorted
segment is created. However, if a sorted segment already exists, then the new rows are added to
the unsorted segment.)

So where does this leave us?

Well, let’s imagine we have an 8 node cluster, with 4 slices per node, and a 20 column table, and
in a single insert, we write one row per slice.

So that’s 8 * 4 = 32 slices.

Each slice has 20 columns, so that’s 32 slices * 20 columns = 640 files.

The table is brand new, so all the rows go into the sorted segment, and an empty unsorted
segment is created.

So that’s two segments per file, so that’s 640 files * 2 segments = 1280 blocks.

So that’s 1.28 gigabytes of disk, to store 32 rows.

Aside from just the simple amount of store used, we also have to think about the amount of disk
I/O which is going on. Reading or writing those 32 rows used up something like a full third of
a second of the entire disk I/O of a modern SSD - start doing lots of that on a busy cluster and
see where it gets you.

Now, at first glance, this may seem completely crazy, but it really isn’t.

You have to remember Redshift is a clustered, sorted, column-store database.

Redshift is designed for Big Data - it has taken all the design choices which are absolutely right
and correct for working with Big Data - but these choices are death and ruin if you’re working
with small data.

What’s widely unperceived is that with relational databases, Big Data and small data are mutu-
ally exclusive.
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A Big Data relational database is not a sort of souped-up, super-sized version of a normal
relational database; it’s a completely different beast, and in particular it can efficiently handle
Big Data and only Big Data.

Being able to handle Big Data does not mean you can handle small data.

If you try to use Redshift with small data, well, what happens is this : if your data is small
enough, then the power of the hardware overwhelms the data and you can do anything you like
and it all works just fine anyway.

Your queries are running literally a thousand times slower than they could, but it just doesn’t
matter, because they all run in a second or two or maybe a minute or two, or if you’re doing lots
of INSERTS maybe an hour or so (as opposed to running in, say, ten seconds).

In this scenario, you’ve loosing out because you don’t need Redshift, so you could be using say
Postgres, and Postgres has a lot, lot more functionality than Redshift - Redshift is a modernized
database, not a modern database; and also because even with such tiny data, there are still ways
with Redshift you can trip up over your own feet, such as query compilation times, which make
BI application use problematic even with tiny data, or with disk use overheads, as discussed.

Redshift offers essentially three methods by which it allows data to be processed efficiently;
clustering, sorting, and column-store. These methods all need to be operated correctly to be
effective, and the correct operation of these methods imposes constraints and restrictions upon
system and data design, which must be honoured, or these methods do not work.

As your data becomes larger, and where Redshift is being incorrectly operated and so you’ve not
thought about any of the design considerations necessary to use clustering, sorting and column-
store correctly, and so they are not in effect, you start to have enough data that the hardware no
longer overwhelms the data, and now performance is becoming awful, and you are now well and
truly dead in the water because you will need to redesign your entire system from the ground
up, to use clustering, sorting and column-store correctly.

It’s a big, nasty, deadly booby-trap and the killer problem here is that I have never seen AWS
ever tell a client Redshift is inappropriate for their use case, or even that any of these issues exist.
I don’t think the TAMs actually know.

When your cluster starts to slow down the response I usually here - the only response available
to them, given what I suspect is lack of knowledge, and that the entire system would need to
be redeveloped to use clustering, sorting and column-store correctly, is that you probably need to
buy more nodes.

This is also good for AWS’s bottom line. Better than use sorting correctly and halve your cluster
size.

A problem here is that AWS is lack a clustered, unsorted, column-store relational database -
which is basically what Snowflake is, and to my eye is one of the reasons Snowflake is cleaning
up (well, that and Snowflake has plenty of modern SQL functionality, excellent docs and actual,
genuinely meaningful Support - I am of the view Redshift lacks all three).

Clustering is pretty easy to use correctly (but it costs money to add nodes, and not quite all
functionality scales as you add more nodes - for example, you still have just the one leader node).
Column-store also; there’s not much devs and users need to know. Sorting is a living nightmare
to get right, because it’s extremely knowledge intensive, for all of the admin, devs and users who
issue queries, and imposes no end of constraints on what you can do with your queries - there
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are a ton of use cases which simply can’t use sorting, and that’s a shame, because sorting is free
and mind-bendingly efficient - which means you need staggeringly less hardware to get the same
performance level compared to an unsorted database.

So, given the knowledge requirements, what you find in practise is that the vast majority of
clients are absolutely not in and will never be in a position to use sorting, but in fact they don’t
need sorting, because clustering and column-store would do just fine for the amount of data they
have.

If you’re using Redshift now, and you know you’re using sorting, and you know your users are
using sorting correctly, and you’re running your own VACUUMs and you’re aware of the producer-
consumer scenario with VACUUM which is one of the ultimate capacity limits for a cluster, then
you’re good.

If you don’t know you’re using sorting, and you’re not running your own VACUUMs, and either
your admin, your devs or your users don’t know what sorting means for the table design and
queries - it makes no sense for you to be on Redshift.

(Note that everything you might be told by a TAM about auto-vacuum, and clusters managing
themselves, and so on, infuriates me - it is in my view pure marketing material, and is in no
way actual, effective functionality. In my experience, looking at clusters, and talking to other
Redshift admin, and my own investigation into auto-vacuum, this stuff simply has no meaningful
effect.)

So, that’s been a long aside - which originally all started as an explanation of how data is stored
on disk. Let’s get back to that, because there’s a little bit more to say.

We’ve seen then all disk I/O is in one megabyte blocks.

What we need, for this knowledge to be useful, is a way to know how many blocks are being used
by a table.

This information is available normally though a system table, STV_BLOCKLIST, but that system
table of course on Serverless is now inaccessible.

However, in the SVV system tables, there is a system table SVV_TABLE_INFO, which has one row
per table and shows information about that table.

Normally I steer a mile wide of this system table view because the code is huge and incredibly
complicated, I expect it to be buggy, the view has behaviours which are not helpful (such as
not showing empty tables), the data it does show is a hodge-podge of the weird and useless, I
utterly disagree with how it computes some of its values (in particular, unsorted, which is the
percentage of how many rows are unsorted - this is being computed by taking the total number,
across all slices, of unsorted rows and dividing it by the total number of rows, which is wrong - a
query is as fast as the slowest slice, so this value needs to be computed per-slice, with the most
unsorted slice being how unsorted the table is), and so on.

However, since almost all the system tables have been made inaccessible, we have to use what
we can get, and in this view there is a column called size, and it is supposed to be the number
of blocks used by the table.

That this column continues to exist in Serverless, given the censorship of the system tables, is
extremely surprising.
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I suspect it remains because if it were to be removed, the view code would need to be different
for provisioned and Serverless, and that can’t be done.

However, it might be perhaps it was just overlooked, or considered harmless.

I can on a provisioned cluster obtain the source code for this view (I can’t on Serverless, it’s
censored, as described before) and looking at how the size column is computed I am not filled
with joy.

In the end it comes down to values being read directly from a table which does not contain
raw data as such (STV_BLOCKLIST has one row per block, and I trust it), but rather contains
computed data, one row per table, which simply says how many blocks the table has.

So I have no idea how that data is being computed.

Well, it’s still all there is, but as it turns out, it does seem to be producing exactly the values I
would compute myself, so I think it is correct.

Where we know a priori how tables are working under the hood, at least in provisioned Redshift,
we can predict for the tests exactly how many blocks should exist, and then we can check, using
size, if that is in fact the number of blocks we find.

So, that’s all the explanations. On to the good stuff.

Elastic Resize A workgroup specifies its compute in terms of Redshift Processing Units
(RPUs), which originally ranged from 32 to 512, in units of 8.

I say originally, because after some time, 8, 16 and 24 RPU workgroups were introduced. I think
this was done because a 32 RPU workgroup is already expensive (11.52 USD per query-hour),
and this was felt to be hindering adoption.

I suspect these smaller workgroups are different to the original workgroups, and so would muddy
the waters, and so to begin with I’m going to focus on the original 4 to 64 NRPU workgroups. I
will return to the smaller workgroups once the original workgroups have been dealt with.

That form of numbering, 32 to 512 in steps of 8, is strange and curious, and as we shall see in
fact carries hidden meaning.

If we normalize RPUs, using units of 1 rather than 8, it’s really the range 4 to 64, which I call
Normalized Redshift Processing Units (NRPU).

The official docs on the page Compute capacity for Amazon Redshift Serverless, provide the one
and only one documented fact about RPUs, which states than 1 RPU has 16 GB of memory,
which means 1 NRPU, where it is 8 RPU, has 128 GB of memory.

So, if the docs are correct, we’re looking at workgroups ranging from 0.5 TB to 8 TB of memory.

Now, here’s a thing - the default workgroup size is 16 NRPU - that’s 2 TB of memory.

That’s a lot for a default.

Why so large a default?

What immediately caught my eye is that the default, 16 NRPU, is exactly halfway, in terms of
elastic resize, between the smallest and largest workgroups. It’s four times larger than a 4 NRPU
workgroup, and 4 times smaller than a 64 NRPU workgroup.

Spooky, huh?
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(Looking at the official doc page Overview of managing clusters in Amazon Redshift, we find
the maximum elastic resize permitted for ra3.4xlarge and ra3.16xlarge is indeed 4x. We
also see on the page Amazon Redshift clusters, that ra3.4xlarge has 96GB of memory, while
ra3.16xlarge has 384GB of memory, with 1 NRPU as we’ve seen, if the docs are correct, having
128 GB of memory, and so being in the right ball park.)

In the test script, I create a test table named table_slices, with key distribution and two
raw encoding int8 columns, where the first column is an identity column, starting at 1 and
incrementing by 1 and which is also the distribution key.

1024 rows are written to the table, which being the single insert after table create will automat-
ically be sorted, and then the following query is issued;

select size from svv_table_info where "table" = 'table_slices';

This tells me the number of blocks in use by the table.

Given the tiny number of rows (one block of raw int8 holds about 260k rows), I am expecting
one block per slice, per column, per segment.

(One important detail here is that every table has three hidden columns, which belong to Redshift,
which are used for MVCC. So although I defined the table with two columns, in fact, it has five
columns. Of the three hidden columns, one behaves normally, the other two behave oddly, here
where I say behave I mean in terms of the number of blocks they consume; but where the number
of rows is so small, their behaviour will not matter - they will all use up a single block per slice,
per column per segment.)

After the first insert query with its 1024 rows, and the first test query which returns the number
of blocks in use, I insert to the table using a self-join, with a LIMIT of 100,000 rows, the following
query;

select distinct slice_num() as slice from table_slices order by slice;

I add the extra rows to get a decent number of rows on every slice, because Redshift is pretty
variable when it comes to deciding what slices to use, and when a slice only has a few rows, it is
often not used, with some other slice reading those rows. Getting a decent number of rows on
each slice made them more likely to be used, which allows us to see them via slice_num().

The query above, the slice_num() query, will tell me firstly if slices are in use at all, and if so,
which slices participate in the test query, where the test query is simply reading the rows from
the test table.

So, the first finding was it looks like there are indeed slices in a workgroup.

For example, here’s the output of the query, the list of participating slices, for a 16 NRPU
workgroup;

Slices
0, 1, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 20, 21, 22, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38,
39, 40, 42, 43, 46, 47, 50, 51, 52, 54, 55, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75,
76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 91, 93, 94, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 125, 126, 127
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We see here about 128 slices, the range is from 0 to 127, and the numbers barring the occasional
missing slice are contiguous. Redshift is always a bit variable in slice use, so the lack of a few
slices (such as 2 and 53), is expected - it would be odd and remarkable if this did not happen.

Here’s the same list of participating slices, but from an 8 NRPU workgroup;

Slices
0, 1, 2, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55,
64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 96, 97, 98, 99, 100, 101, 102, 103, 112,
113, 115, 116, 117, 118, 119

The number of NRPU has halved, and the number of slices has pretty closely halved.

However, the maximum slice number, 119, remains close to 128, and looking at the numbers we
see distinct groups of numbers (0 to 7, 16 to 23, 32 to 39, and so on) - the slice numbers are
pretty much contiguous in their groups, but the groups have gaps between them.

That’s extremely important, as we shall shortly see, so keep it in the back of your mind.

Now, here’s the table which presents the critical, central information in this investigation : for
each workgroup (remember to begin with, I’m looking at 4 to 64 NRPU), we see the number
of slices which participated in the query, and of those slices, the smallest and the largest slice
number.

NRPU # slices min max
64 96 2 503
32 106 0 254
16 95 0 127
8 58 0 119
4 28 0 101

Amazing, isn’t it! Right now, I kid you not, I am writing with a French accent and twirling the
ends of my little moustache.

To begin with, let’s look at the number of slices participating in the test query (# slices).

First, we need to remember as mentioned before Redshift is fairly variable when it comes to slice
recruitment, so some differences are always expected, and bearing this in mind, I would say for
the 16, 32, and 64 NRPU workgroups the maximum possible number of recruited slices is 128
(but fell short where Redshift is unpredictable in its slice recruitment), and for 8 NRPU this
number is 64, and 4 NRPU this number 32.

(Note I’m carefully saying “maximum possible number of recruited slices”. There’s going to be
quite a bit of detail to come about slices, and that statement is all that can correctly be said at
this point.)

As such, we see that the default workgroup size, 16 NRPU, can recruit up to 128 slices, and
when we halve the number of NRPU, we halve the number of recruitable slices (and we see this
twice, as we halve once to get to 8 NRPU, and halve again to get to 4 NRPU).
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However, this is not the behaviour we see as we double the number of NRPU, when we go to
32 and then 64 NRPU. When we double the number of NRPU, the number of recruitable slices
remains the same.

We’ll be coming back to this shortly.

Turning now to the maximum slice number, remembering that slices are numbered from con-
tiguously from 0, the maximum slice number gives us a pretty good idea of the total number of
slices in the workgroup.

We can see that the 16 NRPU workgroup looks to have 128 slices (0 to 127), that when we then
double the number of NRPU the number of slices doubles (32 NRPU has 256 slices, 64 NRPU
has 512), but that if we instead halve the number of NRPU, the number of slices does not halve
- the number goes down a bit but still basically looks like 128.

How exactly peculiar.

How very much like… elastic resize.

With elastic resize, when the cluster is enlarged, we have more nodes and more slices (and they’re
all compute slices), but when the cluster is reduced in size, the number of slices remains that of
the original cluster - and this is exactly what we see here.

What’s seen is exactly what would be expected if all workgroups begin as 16 NRPU, but are
then elastic resized to the size the user selected when creating the workgroup.

This would also neatly explain why the default cluster size is so large, and why it is the mid-way
point in a 4x elastic resize range.

So, what would be happening is that when the user creates a workgroup, it begins as 16 NRPU
cluster, and this cluster has its normal complement of slices, and they are all data slices.

When the cluster size is doubled, or quadrupled (to 32 and 64 NRPU, respectively) the number of
slices likewise doubles or quadruples (where these new slices are compute slices, not data slices).

Any slice, data or compute, can read data from any other slice, but it is only the original data
slices which actually have any data, so the maximum number of slices which can participate in
the query remains the same as the number of data slices in the original cluster (because you
can’t have two slices reading the data from one slice).

The reason for the weird variability for 16, 32 and 64 NRPU workgroups in the number of slices
participating in the query is just Redshift being Redshift; to my eye it looks like Redshift is
making the wrong choices and so is running the query inefficiently, but I’m used to seeing this
kind of behaviour in provisioned Redshift - it’s entirely common in a query for some slice to do
no work, while others do twice as much (and this on idle clusters, so it’s not load balancing).

If I saw here that the slices were consistently all being used, it would be a signal that there is
something new in Serverless, and it’s not just an ordinary cluster, because then we would be
looking at behaviour which really is different to an ordinary provisioned cluster.

Now, moving on to where the cluster size is halved, or quartered, the number of nodes is reduced
but the number of slices remains the same, and they are all data slices, crammed onto fewer and
fewer nodes.

Redshift always runs only the number of slices given in the specification of the node type, so we
do in fact see a halving and the a quartering of the number of slices participating in the query
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- only now, they are reading data from not one slice, but from two or four slices, respectively
(well, barring the natural variability in slice behaviour in Redshift).

Where any slice, data or compute, can read data, and where as part of an elastic resize data
slices are distributed as evenly as possible over the new number of nodes, we expect all nodes
to have some data slices (and indeed, when the cluster has been made smaller than the original
cluster, all slices on all nodes are data slices) and so all nodes will have some slices which have
data and so all nodes will have some slices participating in the query.

Slices (regardless of whether they are data or compute) are numbered, over the cluster as a whole,
contiguously from 0, so slices numbers range from 0 to the number of slices minus one.

As such, the maximum slice number we find participating in the test query is telling us quite
accurately the total number of slices in the workgroup, as all nodes have slices participating in
the query, with the highest numbered node containing the highest numbered slices.

The original cluster, 16 NRPU, has a maximum slice number of 127, by which we can reasonably
guess there are 128 slices in the cluster.

When the cluster is doubled, or quadrupled in the size, we see the highest slice number also
closely doubles, or quadruples.

When the original 16 NRPU cluster is made smaller, and is halved, or quartered in size, the
number of nodes is halved, or quartered, but the number of slices remains the same as on the
original cluster. What happens is that all those slices, and they are all data slices, are crammed
onto the smaller number of nodes now available.

In this situation, where there are more slices than there should be in the node specification,
Redshift will run on each node only the number of slices specified by the node specification,
where running slice now reads more than one slice’s worth of data.

As such, there will be running slices on every node, but the number of running slices will now
be much less than the number of data slices actually on the node, and Redshift can be seen to
strongly tend to run the lowest numbered slices on each node.

As such, in this case, where the cluster has been made smaller, the maximum slice number is
expected to be slice number of the highest numbered running slice, where the running slices will
tend strongly to be the smallest slice numbers on the node.

This is why we see that the 16 NRPU has a maximum of 127, the 8 NRPU has a maximum
of 119, the 4 NRPU has a maximum of 101. The number of slices on each node is becoming
larger and larger, as the cluster becomes smaller and smaller, but the number of running slices
is always the same, and are always strongly tending to be the lowest numbered slices on a node.
As such, as the cluster becomes smaller, we see a moderately smaller maximum slice number.

We can see this behaviour directly by examining the list of participating slice numbers for each
workgroup size.

Let’s begin with 4 NRPU, where we see the following slice numbers participate in the query.

Slices
0, 1, 2, 4, 5, 6, 7, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 96, 97, 99, 100, 101

This breaks down clearly into 4 groups of slice numbers;
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0, 1, 2, 4, 5, 6, 7
32, 33, 34, 35, 36, 37, 38, 39
64, 65, 66, 67, 68, 69, 70, 71
96, 97, 99, 100, 101

There are eight slices in each group except of the final group, which has six (but in previous
test runs that was usually also eight slices - what we see in the data here is Redshift’s usual
variability), but now look at the first slice number from each group - an incredible 0, 32, 64 and
96!

Moreover, we also see in each of the first three groups, we’re getting contiguous consecutive
numbers, where Redshift strongly tends to run the lowest numbered slices on a node.

The 16 NRPU workgroup has 128 slices (we can see this directly from the highest slice number
being 127 and the practically contiguous list of slice numbers participating in the test query).

A 4 NRPU workgroup after an elastic resize will still have 128 slices, but all on only a quarter
as many nodes, which means 32 slices per node.

This is why the first slice numbers of each group of slice numbers, which we saw above are 0,
32, 64 and 98, are a multiple of 32 - each node has 32 slices, but is running only 8 slices, and
Redshift is using the lowest numbered slices on each node.

We can cross-check this by examining the data from the size column from SVV_TABLE_INFO.

The test table has 5 columns and 2 segments, and we predict 32 slices (all data slices) per node
on 4 nodes, which means the prediction is for 5 * 2 * 32 * 4 = 1280 blocks of disk for the test
table - and this is exactly what is found.

NRPU # blocks ∴ # slices
4 1280 128

I assert then on the basis of the evidence so far that a 16 NRPU workgroup is an ordinary, normal
16 node Redshift cluster, each node with 8 slices, and that this node type originally (when the
workgroup limits were 4 to 64) had a 4x elastic resize.

Now, remember that 1 NRPU is really 8 RPU?

A 16 NRPU workgroup is really a 128 RPU workgroup - and we see now it has 128 slices.

1 RPU is 1 slice.

Let’s repeat this examination now on the 8 NRPU workgroup, and see if it holds up.

We see the following participating slice numbers;

Slices
0, 1, 2, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55,
64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 96, 97, 98, 99, 100, 101, 102, 103, 112,
113, 115, 116, 117, 118, 119

This breaks down into 8 groups of slice numbers;
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0, 1, 2, 5, 6, 7
16, 17, 18, 19, 20, 21, 22, 23
32, 33, 34, 35, 38, 39
48, 49, 50, 51, 52, 53, 54, 55
64, 65, 66, 67, 68, 69, 70, 71
80, 81, 82, 83, 84, 85, 86
96, 97, 98, 99, 100, 101, 102, 103
112, 113, 115, 116, 117, 118, 119

With between 6 and 8 slices participating on each node (Redshift’s usual variability).

Again, note the first slice numbers in each group : 0, 16, 32, 48, 64, 80, 96, 112 - there are now
16 slices on each node, which is what we would predict; half as many as for 16 NRPU, twice as
many as for 4 NRPU.

We can again look at the size information from SVV_TABLE_INFO.

The test table has 5 columns and 2 segments, and we predict 16 slices (all data slices) per node
on 8 nodes, which means the prediction is for 5 * 2 * 16 * 8 = 1280 blocks of disk for the test
table - and this is exactly what is found.

NRPU # blocks ∴ # data slices
8 1280 128

The 8 NRPU workgroup is behaving exactly like the 16 NRPU workgroup, and if you look in
the test results at the 4 NRPU workgroup, you see the same again.

Now, I must point out that cramming many slices into a node is not without consequence, which
is to say, inefficiency.

The first consequence, is that leads to considerable - I might even say vast - additional overhead
in disk use.

The original 16 node cluster, has 128 slices - it’s a big cluster. There’s plenty of overhead - the
test table, with five columns, if we write a single row to each slice, consumes 1280mb of disk -
but this is what you get when you use Big Data methods and it’s in line with the size of the
cluster.

If we by contrast span up a cluster with 4 nodes in the first place, each with 8 slices, so no
elastic resize, we would have 32 data slices rather than 128, and so the test table would consume
5 columns * 2 segments * 4 nodes * 8 slices per node = 320mb of disk.

By performing the elastic resize, the smaller clusters are all forced to have the disk overheads of
the 16 node cluster, rather than the much smaller overheads they would have if the cluster were
originally brought up at their smaller size.

This all turns up in your RMS bill, and in the performance of your queries where they must read
so much more disk.

RMS is however extremely cheap - 24.576 USD per terabyte per month - but query time on
Serverless is not cheap.

42



This problem is primarily an issue with small tables. When a table is large, the amount of data
overwhelms or massively overwhelms the amount of overhead. However, there can be a lot of
small tables in a cluster.

I once saved a customer 20% disk space by by converting all their small tables to being unsorted,
which mean they had one segment only; that was with dc2.8xlarge, and it saves them buying
three nodes (about 130k USD per year).

The second consequence, as we’ve seen, Redshift is only running the specification number of
slices; so the data assigned to all those other data slices is on the node, but those slices are not
running.

So what happens to that data? I’ve not investigated, but I think the slices that are running are
processing it serially. Each slice processes its own data, and then the data of one (8 NRPU) or
three (4 NRPU) other slices.

The amount of data remains the same, but it’s now shared out over many slices. Broadly speaking,
all other matters being equal, I think this means the amount of disk seek is multiplied by the
number of slices worth of data being read.

Normally disk seek is death and ruin to performance, but in Redshift all disk I/O is in one
megabyte blocks, which helps and I think strongly to minimize the impact of this issue. Never-
theless, it is a cost, and I’ve also not investigated it, and with Redshift, until you investigate,
you don’t know; there are often surprises, not least in that you often find what’s being done is
not what you’d expect to be being done.

Now, I said at the beginning I would return to the more recently introduced small workgroups,
the 1, 2 and 3 NRPU workgroups.

Something interesting and different must be going on here, because these sizes are outside of the
4x elastic resize range of the 16 node cluster.

Let’s start with the information about slices.

NRPU # slices min max
3 24 0 110
2 16 0 99
1 8 0 67

These are the participating slice numbers;

3 NRPU Slices
0, 1, 2, 3, 22, 23, 24, 25, 44, 45, 46, 47, 65, 66, 67, 68, 86, 87, 88, 89, 107, 108, 109, 110

2 NRPU Slices
0, 1, 2, 3, 32, 33, 34, 35, 64, 65, 66, 67, 96, 97, 98, 99
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1 NRPU Slices
0, 1, 2, 3, 64, 65, 66, 67

The 3 NRPU workgroup has six groups of slices (which means six nodes), the 2 NRPU workgroup
has four groups of slices and so four nodes, the 1 NRPU workgroup has two group of slices and
so two nodes.

This makes sense, because single node clusters in Redshift are almost aberrations. There’s a
leader node, which should have an instance all to itself, crammed into a single node along with
a single worker slice. Never use single node systems except to have a look at Redshift - and we
see here for the small workgroups the devs have avoided single node systems.

We can also see each group of slice numbers has contains about four slices, which means each
node is running 4 slices - so they are in fact a smaller node type, quite probably ra3.4xlarge.

This however leads to a staggering realization that for the 1 NRPU workgroup, with its two
nodes, that these nodes must have SIXTY-FOUR slices each.

Holy quantum cow on a light beam.

That’s a 16x elastic resize. The largest elastic resize permitted to you and me is 4x, and that’s
only for the larger node types. It’s 2x for the smaller node types.

We’ve gone from 16 nodes of ra3.8xlarge to 2 nodes of ra3.4xlarge.

The overheads on disk use for small tables are going to be enormous.

As we’ve seen, the original cluster, 16 nodes of ra3.8xlarge, uses 1280 blocks to write one row
to each slice of the test table.

If I made that table on a cluster which was created as two nodes of ra3.4xlarge, so no elastic
resize, the disk space used would be 5 columns * 2 segments * 2 nodes * 4 slices = 160 blocks.

So - the overhead incurred by using elastic resize from 16 NRPU, rather than a cluster brought
up directly with the desired number of nodes is over a gigabyte of disk, for our single test table.

I think the smallest workgroup sizes are most likely the most common, too - I bet there are more
1 NRPU than any other size.

As an aside, note that we see in the test results for blocks used, that every workgroup is using
1280 blocks for the test able.

NRPU # blocks ∴ # data slices
64 1280 128
32 1280 128
16 1280 128
8 1280 128
4 1280 128
3 1280 128
2 1280 128
1 1280 128
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This makes sense, as it reflects the fact that the number of data slices is always 128, and compute
slices do not store data.

As a second aside, here’s a table, from the test results, showing the block count for the test table
on a 4 node dc2.large and a 2 node dc2.large, these node types having 2 slices each.

Nodes Blocks
4 80
2 40

Going back to the table for the findings from slice_num(), the fact that the 1, 2 and 3 NRPU
workgroups are 2, 4 and 6 nodes of 4 slices explains what we see with the number of slices
participating the query.

NRPU # slices min max
64 96 2 503
32 106 0 254
16 95 0 127
8 58 0 119
4 28 0 101
3 24 0 110
2 16 0 99
1 8 0 67

The 4 NRPU workgroup is 4 nodes of 8 slices, so the maximum number of slices which can
participate in a query is 4 * 8 = 32.

The 3 NRPU workgroup is 6 nodes of 4 slices, so the maximum number of slices which can
participate in a query is 6 * 4 = 24.

This explains why the maximum slice number rises when we go go from 4 NRPU to 3 NRPU.

We still have 128 data slices, but they are now on 6 nodes of 4 slices rather than 4 nodes of 8
slices. With 128 data slices, 6 nodes gives us 21.3 slices per node, and 4 nodes gives us 32 slices
per node. The 4 slice nodes will run only 4 slices, where Redshift strongly tends to use the lowest
numbered slices on a node, so the maximum slice number will be from the first four slices of the
final 21 or 22 slices. The 6 slice nodes will run 8 slices, and so the maximum slice number will
be from the first eight slices of the final 32 slices.

With 6 nodes, the final node has slice numbers starting at 128 - 21 = 107 or 128 - 22 = 108
(depending whether it receives 21 or 22 slices), and so the maximum slice number will probably
be that number, plus four (so 111, or 112).

With 8 nodes, the final node has slices starting at 3 * 32 = 96, and runs eight slices, so it’s
maximum slice number will be about 104.

Explanations such as this, with so much detail and which explain such a tiny and otherwise
inexplicable behaviour, add great weight to the theory that an elastic resize is occurring.

Finally, an upshot of everything we’ve seen now is that all RPUs are not equal, despite being
advertised as serverless and being priced equally.
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The 16 NRPU workgroup is the most efficient; it’s pure data slices. Workgroups with more
NRPU increase their slice count with compute slices, not data slices, and workgroups with less
RPU and you’re getting more disk seeks and more disk overhead, and if you drop down to 1, 2,
or 3 NRPU, you have a different, smaller node type, with only four running slices, and you end
up with 64, 32 and 21.3 slices per node, respectively (the 21.3 being where 128 data slices are
distributed over 6 nodes, as 128 / 6 = 21.333, so some nodes have 22 slices, others have 21).

Secondary Evidence
Idle Workgroups

When a Serverless workgroup has no clients connected, and has received no queries for 60 or
more minutes, when making a new connection, the new connection occurs at the normal speed
(almost immediately), but the first query takes some tens of seconds. Queries after this behave
and run normally, without this unusual behaviour.

Here’s the timing for the first query issued after a 61 minute period with no queries.

Event Duration (seconds)
Connection 2.052560806274414
First query 27.26804208755493
Second query 0.12465095520019531

In the table above, the first query takes 27 seconds. In earlier results, I saw larger values, such
as 40 seconds.

The significance of this idle period and the delay of the initial is obvious, in that if Redshift
Serverless is serverless, why would a workgroup going to sleep after one hour?

The delay is however easy to explain if we imagine that under the hood workgroups are ordinary,
normal Redshift clusters : if no queries are being issued, all of the hardware for the cluster is
provisioned and cannot be used by another user, but no income is accruing, so the cluster must
sooner or later be shut down or suspended in some way.

However, the briefness of the delay, at 30 or so seconds, is a puzzle to me - and it is the and the
only unexplained puzzle in this document.

With provisioned Redshift, there is functionality to pause and resume clusters.

On the face of it, that seems an obvious answer - but typically those operations take about five
minutes each (and that’s with an empty small cluster).

I can’t see how a workgroup/cluster comes back to life in 30 seconds or so.

Note however, this, something most intriguing, from the general output of the test script;

Line Output
1 # The Cluster Idle Test…
2 delete_workgroup( wg-u5-1 )

46



Line Output
3 Failed to delete workgroup, attempt 1, error

An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There
is an operation running on the workgroup.
Try to delete it later.

4 Failed to delete workgroup, attempt 2, error
An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There
is an operation running on the workgroup.
Try to delete it later.

5 Failed to delete workgroup, attempt 3, error
An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There
is an operation running on the workgroup.
Try to delete it later.

6 Failed to delete workgroup, attempt 4, error
An error occurred (ConflictException) when
calling the DeleteWorkgroup operation: There
is an operation running on the workgroup.
Try to delete it later.

So, to give context; the test runs, which is to say, it pauses for 61 minutes and then runs the
test query, and then when that query has completed, runs the test query a second time (so I can
compare how long the query took when it was run the first time after a 61 minute idle period,
and how long the query takes when it is run without that idle period).

Having issued the second query, the test script then deletes the workgroup.

The output above is what is seen when the script tries to delete the workgroup; the delete
command is refused, on the basis that an operation is already in progress on the workgroup.

I have to loop issuing the delete command until the workgroup is not busy with this other
operation, whatever it is, so that the delete command can actually occur.

This usually takes about 20 seconds (I retry the delete with a five second pause between each
attempt, so the four messages in the above table represent about 20 seconds).

That looks awfully like the cluster is waking up, and an operation is occurring which is the wake
up, and so my delete is refused.

In any event, going back to the timing results and in particular now regarding the rapid con-
nection time, I think when a new connection is made to a workgroup, the connection is not
being made directly to the cluster - it’s being made to a proxy, which immediately accepts the
connection, and triggers the unpause of the cluster.

You can appear always to be able to immediately issue queries, but if the workgroup has paused,
you of course really do have to wait for the workgroup to unpause, and once the cluster is back,
the query is serviced, and following queries are then serviced normally.

I note also with provisioned Redshift, the user can select any port number for the cluster, but
for Serverless, ports are restricted to the ranges 5431 to 5455 and 8191 to 8215. I suspect this
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change is in some way or another related to the connection proxy.

System Tables

As described in Introduction to Redshift Serverless, the large majority of system tables have in
Serverless been made inaccessible to both admin and normal users.

The PG system tables remain, as do most (but not all - anything which would carry information
about what the workgroup is doing, or how, has been removed) of the SVV views, and most of the
SYS views, which seem to be intended for Serverless and so already carry no information about
what or how, remain.

As mentioned, the SQL for the SVV and SYS views has been censored by AWS.

However, we can still figure out some useful information about these views, because we are allowed
to query the SYS views themselves - so we can issue explain select * from [view_name];,
and the query plan emitted will tell us which real, actual tables are being scanned.

We can then use the PG system tables to enumerate the columns of those tables, and see what
we think of their columns, and how those columns relate to the columns in the view.

Having done this, what I find is that a number of the underlying tables have columns for pid
(short for process ID, a leader node concept), node and slice, but that these columns have and
have always been removed from the view which uses these tables.

To put it more plainly; the underlying actual tables for Serverless do contain information about
pids and about nodes and slices, but this information is removed from the views which the user
is allowed to access.

The 50 or 60 or so SVV tables (they’re all views, in fact) have been around for a long time,
predating Serverless, but the information they contain is almost wholly about data - tables,
users, group, etc - there are only two SVV views which particularly contain information about
what the cluster is doing, and how, these being svv_query_inflight and svv_query_state.

Those two have been made inaccessible.

A few other SVV views have fragmentary or limited information about “what and how”, and these
also have been made inaccessible.

As part of the test script, I checked to see which SVV tables were accessible, and which not. This
table gives the inaccessible views.

Name Accessible
svv_diskusage False
svv_geography_columns False
svv_geometry_columns False
svv_iam_privileges False
svv_query_inflight False
svv_query_state False
svv_restore_table_state False
svv_rls_applied_policy False
svv_schema_quota_state False
svv_sem_usage False
svv_sem_usage_leader False
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Name Accessible
svv_vacuum_progress False
svv_vacuum_summary False

The view svv_query_inflight is the only view in all of the SVV views which has a column
indicating slice number.

I can imagine the vacuum-related views being removed as I see AWS pushing the line users do
not need to even know about VACUUM, and can rely on auto-vacuum (but do note that when I
investigated auto-vacuum, I found it to be wholly ineffective).

Also of course, needing to tell users they need to manually manage VACUUM does not jibe with
serverless being presented as different to provisioned, and zero-maintenance for users.

SYS_SERVERLESS_USAGE There’s is a SYS view called sys_serverless_usage, which deserves
special mention.

This view measures serverless use and as such is specifically for and only for Red-
shift Serverless. Examining the query plan from EXPLAIN, it uses two actual tables,
stll_arcadia_billing_ris_reports and stll_xregion_metering.

The table stll_arcadia_billing_ris_reports has the following definition;

name column data type
stll_arcadia_billing_ris_reports billing_time char(100)
stll_arcadia_billing_ris_reports cluster_arn char(128)
stll_arcadia_billing_ris_reports cluster_rpus int4
stll_arcadia_billing_ris_reports instance_type char(128)
stll_arcadia_billing_ris_reports interval_endtime timestamp
stll_arcadia_billing_ris_reports interval_starttime timestamp
stll_arcadia_billing_ris_reports is_burst int4
stll_arcadia_billing_ris_reports num_nodes int4
stll_arcadia_billing_ris_reports report_arn char(128)
stll_arcadia_billing_ris_reports report_time timestamp
stll_arcadia_billing_ris_reports request_id char(100)
stll_arcadia_billing_ris_reports usage_rpu_sec int4
stll_arcadia_billing_ris_reports usage_sec int4
stll_arcadia_billing_ris_reports usage_sec_before_minimum int4

Note the following columns : cluster_rpus, instance_type, num_nodes.
What would a column named cluster_rpus, or columns indicating number of nodes, and the type
of those nodes, be doing in a table used by a serverless version of Redshift?

Obviously, it is directly and easily explained if Serverless were actually ordinary, normal Redshift
clusters, where AWS select the number and type of node based on the number of RPUs.
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Function reboot_cluster()

Now for a little bit of anecdotal evidence, because it is no longer reproducible.

During the first days of June, running a 1 NRPU workgroup, I tried issuing a call to the
[reboot_cluster()] function, to see what would happen.

To my mild surprise, it worked, and I was immediately disconnected.

I had the presence of mind to immediately reconnect, and to immediately re-issue the query prior
to the reboot, because I already knew at this point that when a workgroup goes idle, you can
connect instantly (you’re really connecting to a proxy) but the first query takes a long time - I
thought the same might happen here, and it did. I had rebooted the workgroup, but I could
instantly reconnect and issue a new query - it’s just I had to wait 30 seconds or so before the query
was serviced. Issuing the query again (I have result cache disabled), it is serviced immediately.

So here we’re again seeing the connection proxy at work.

I then wrote a test, which is still present in the test script but is now as you see commented
out, to demonstrate that reboot_cluster() works, and that it behaves in the same way as
connecting to and then querying an idle cluster.

The reason the test is commented out is because that night, a new version of provisioned Redshift
was published over every region (I do not check Serverless versions, so I do not know if a new
version of Serverless went out, but I would think it did, as Serverless workgroups look to be
normal, ordinary provisioned Redshift clusters, and so updates are released at the same time as
updates to provisioned Redshift), and the next day, reboot_cluster() no longer rebooted the
workgroup - instead, it returns this message;

ERROR: function reboot_cluster is not available in serverless mode

So I now cannot show you what I experienced the day before that Redshift update.

Now, of this anecdotal evidence, there are two comments to make.

Firstly, I could be completely wrong. I have no documentary evidence, and it might be that I
somehow was confused, slipped up, thought I was doing something I wasn’t, whatever it is.

Second, it seems improbable that this change occurred at just the time I was testing the function
on Serverless.

However, I have had such a co-incidence happen once before, about two years ago, when I first
began to write Redshift PDFs.

One of the very first PDFs, which looked at cross-database queries, was finished and I was ready
to publish the next day. That next day, I ran the test one more time - and pow, everything was
going wrong.

It turned out overnight there was a new Redshift release, and the way in which cross-database
queries work had changed. Formerly, they created an actual temp table, and copied over into
that the remote table - you could see the temp tables, how big they were, and they remained in
place as long as the session continued, and were deallocated when the session ended.

Now there was no temp table, and in no record at all, of any kind, of the disk space being used
for the local copy (but you could see the disk space being used by looking at the total number
of blocks in use), and the data copied over did not go away when the session ended (or indeed,
even when the remote table was dropped).
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So it can happen. Redshift releases are made about every two weeks, I am working on Redshift
most days, all that’s needed is that something I happen to be working on changes just as I’m
working on it. Highly unlikely and so very rare, but not so unlikely as to be unthinkable.

Cluster/Workgroup Limits

In the official documentation, we find the page [Quotas and limits in Amazon Redshift], which
enumerates a range of limits, for provisioned Redshift and for Redshift Serverless, such as the
maximum number of schemas in a database, the maximum size of a cursor, and so on.

What’s noteworthy are that the large majority of limitations that are listed for both systems are
either identical or almost identical.

Limit Serverless Provisioned
Connections 2,000 2,000
Databases 60 100
Schemas 9,900 9,900
Tables 200,000 200,000

Note the maximum number of tables for normal Redshift varies by node type. You get to 200k,
which is the maximum, which you reach you get to ra3.4xlarge (a four slice node type) and
is unchanged for ra3.16xlarge (a sixteen slice node type), and it looks like workgroups use an
eight slice node type, so we would expect the 200k limit to be applied.

Finally, note provisioned Redshift has a limit of 10,000 procedures per database. I suspect this
also applies to Serverless, but there’s no practical, cost-effective, way to find out, as each query
to create a procedure would cost 60 seconds of query time, so that’s 10000 minutes, which is 7
days of query time. The cheapest Serverless workgroup would charge 480 USD for that.

It’s not so important :-)

The obvious matter raised here is that is not clear why a Serverless Redshift should continue to
so nearly perfectly present the same, or very nearly the same, limits as Provisioned Redshift -
but this is easily explained if, in fact, under the hood, Serverless is an ordinary, normal Redshift
cluster.

Namespaces

Turning aside finally from workgroups, let us look now at namespaces.

A namespace is very nearly identical to a snapshot. It contains the complete state of a Redshift
cluster - the only difference is that you can start any number of Redshift clusters from a snapshot,
but a namespace is constrained to be operated upon by a single workgroup only.

To my eye, you could easily implement a namespace by using the existing snapshot functionality,
just by adding a constraint to it such that it can be used with a single workgroup only.

Namespace creation is instant, which makes sense as they’re so small - about 50mb or so - but
namespace deletion (with almost no additional data since creation) takes a long time, and we
see here an 11 minute deletion (for 2 NRPU).
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NRPU Create Delete
64 2.6436049938201904 139.958984375
32 0.2426462173461914 154.62592577934265
16 0.3628230094909668 197.90971612930298
8 0.40954065322875977 130.91410112380981
4 0.38789892196655273 663.5637822151184
3 0.4128589630126953 225.63704991340637
2 0.28119683265686035 469.62274193763733
1 0.27158045768737793 190.16908884048462

Times seem highly variable, without any obvious connection to NRPU, and what’s seen here,
with one or two large outliers, is usual.

The following table shows the create and delete times for the seven namespaces brought up for
the resize tests.

NRPU Create Delete
16 0.5747129917144775 195.5482771396637
16 0.2790834903717041 537.4131038188934
16 0.37318849563598633 267.475439786911
16 0.30323123931884766 264.1939504146576
16 0.41089797019958496 149.59405493736267
16 0.2731807231903076 146.12539196014404
16 0.409212589263916 302.38894510269165

Again, highly variable. I have no idea why.

Deductions
Workgroup Node Types

Now we’re figured out what’s going on with workgroups, we can look to pull together information
about the node type in use for the normal 4 to 64 NRPU workgroups.

To begin with, it will be an ra3 type node. This is the current (and third) generation of Redshift
node hardware. (The dc2 node type is the second generation of node hardware.)

Let’s begin with a table of the existing ra3 node types.

Name Slices
Memory
(GB/slice)

Memory
(GB/node)

Resize
(down/up)

Max
Nodes

RMS
(TB/node)

Price
(USD)

ra3.xlplus 2 16 32 2x/4x 16/32 32 1.086
ra3.4xlarge 4 24 96 4x/4x 32/64 128 3.26
ra3.16xlarge16 24 384 4x/4x 128/128 128 13.04

(The Resize column shows two values, the first is the maximum division in size, the second is
the maximum multiplication in size. The Max Nodes column shows two values, the first being
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the maximum number of nodes when bringing a cluster up from scratch, the second showing the
maximum number allowed after an elastic resize. No cluster can ever be larger than 128 nodes,
by any means :-)

So what of the node type being used by 4 to 64 NRPU workgroups?

Well, we know it has 8 slices, and in the naming convention for ra3 the number represents the
number of slices, so this would provisionally give it the name ra3.8xlarge.

(There is one exception to this naming pattern, which isra3.xlplus This is because, to para-
phrase one of the devs, “we had not anticipated this node specification, so we were stuck for a
name” - the problem being you can’t call it ra3.2xlarge because it has less memory and RMS
per slice than the other node types; it’s not linearly proportionate, unlike 4x and 16x.)

Now, both ra3.4xlarge and ra3.16xlarge have 24 GB of memory per slice.

The docs state 1 RPU, which is one slice, has 16 GB of memory, which means one node of
ra3.8xlarge would have 128 GB of memory - and that to me seems really too little (the ra3
nodes are generally considered to be under-provisioned for memory in the first place) and it also
doesn’t fit with the 4x and 16x node types, so the sizes above and below 8x, both having 24 GB
of memory.

I think then the docs are wrong, and somewhere someone or something has mixed up the per-slice
memory for ra3.xlplus (which is 16 GB) with the memory for ra3.8xlarge, and so that the
real memory per slice is actually 24 GB per slice, which gives a total of 192 GB.

(Note here I see plenty of flat factual errors in the docs, all over the place, so I consider this
hypothesis entirely reasonable. I think no one technical reviews the documentation, because the
errors I’ve seen have been so in-your-face obvious that they could not have been missed, had the
docs been read by anyone technical.)

So that gives a value for the memory per slice and per node.

Next, RMS, and what’s really interesting here is what we find in the Serverless docs about RMS
- which is almost nothing.

All I can find in the docs is on a single page, Understanding Amazon Redshift Serverless capacity,
where there are two statements about storage;

The 8, 16, and 24 RPU base RPU capacities are targeted towards workloads that
require less than 128TB of data. If your data requirements are greater than 128 TB,
you must use a minimum of 32 RPU.

Configurations of 8 or 16 RPU support Redshift managed storage capacity of up to
128 TB. If you’re using more than 128 TB of managed storage, you can’t downgrade
to less than 32 RPU.

Vague, isn’t it? but I think there’s a reason for that, as will become clear.

The first statement, as it stands, is most straightforwardly read that 8, 16 and 24 RPU have 128
TB of RMS, and 32 RPU supports more than 128 TB, with no upper limit mentioned.

The second statement is deficient - it says 8 and 16 RPU have 128 TB of RMS, says nothing
about 24 RPU, and nothing about 32 RPU or greater.

So, where to begin with this mess.
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First, I don’t think I trust any of this.

With ra3 node types, RMS storage is on a per-node basis; the more nodes you have, the more
store the cluster has. I expect this to be true for Serverless workgroups too, because they are in
fact normal, ordinary Redshift clusters.

The problem AWS and the author face here of course is that they can’t say anything is per-node,
not for Serverless!

So the author must contort his language enough to avoid stating, or even implying, that anything
is per-node, and thus we get enough waffle to make a Belgian proud.

So on one hand, I think the need to avoid writing per-node has led to sentence construction which
is vague and deficient, but on the other hand I also actually disbelieve the assertions made here
by the documentation even after I account for this obfuscation.

With provisioned ra3 clusters, the 4x and 16x node types both bring 128 TB of RMS. The
ra3.xlplus type brings 32 TB of RMS.

I expect then that the amount of RMS store available to a workgroup depends on the type and
the number of nodes.

I think what the author was thinking when he wrote the docs, and is trying to obscure because
it involves nodes, is that each NRPU brings 32 TB of store, and so 1 NRPU is 32 TB, 2 is 64
TB, 3 is 96 TB; in other words, when the author is saying less than or up to, what he’s omitted
saying is that storage varies by NRPU and the different workgroups have different amounts of
total store.

However, I think what the author thinks is in fact wrong.

I think that just as the author thinks each RPU has 16 GB of memory - the amount from an
ra3.xlplus - the author is also thinking each group of 8 RPU brings 32 TB of store - the amount
from an ra3.xlplus.

The node type for the 4 to 64 NRPU workgroup looks to be an ra3.8xlarge, and for the smaller
workgroups, ra3.4xlarge. Both the ra3.4xlarge and ra3.16xlarge are specified with 128 TB
of RMS per node, so I expect the 8x to provide 128 TB per node as well.

As such, I expect the RMS store for all workgroups is 128 TB times the number of nodes,
because the 4 to 64 NRPU workgroups use ra3.8xlarge and the 1 to 3 NRPU workgroups use
ra3.4xlarge, and both of those node types provide or are expected to provide 128 TB of RMS
per node.

This means the 1, 2 and 3 NRPU workgroups, which are 2, 4 and 6 nodes respectively, are 256
TB, 512 TB, and 1024 TB of RMS, but that the the 4 NRPU workgroup, being only four nodes,
is 512 TB of RMS.

You can bet your bottom dollar AWS are not going to let that out in the documentation for
Serverless.

So, I think the docs here are simply wrong from start to finish - but it’s impossible to test, and
I think also it’s probably unheard of for users to actually run into such large limits anyway, and
if they did, would they comment or mind? perhaps they might mention it to Support, who
probably don’t know about this, and/or give their usual clueless run-around to the user.
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Now, taking the node type table, we can now slot in the workgroup node type as ra3.8xlarge,
and doing so in fact allows us to extrapolate a price, as it would be if this were a provisioned
node, because pricing for 4x and 16x is linear (16x is four times the price of 4x), so 8x will be
double the price of 4x, and that price is 6.52 USD per hour per node.

Name Slices
Memory
(GB/slice)

Memory
(GB/node)

Resize
(down/up)

Max
Nodes

RMS
(TB/node)

Price
(USD)

ra3.xlplus 2 16 32 2x/4x 16/32 32 1.086
ra3.4xlarge 4 24 96 4x/4x 32/64 128 3.26
ra3.8xlarge 8 24 192 4x/16x 64/128 128 6.52
ra3.16xlarge16 24 384 4x/4x 128/128 128 13.04

Claims of Serverless Dynamic Auto-Scaling

In the light of everything so far, we can now think to revisit the claims of dynamic auto-scaling
we saw in Introduction to Redshift Serverless.

AWS do claim dynamic, non-interruptive auto-scaling for Redshift Serverless - I find this claim
made three times - but provide no information, at all, about the mechanism.

The mechanism is not by means of dynamically changing the number of RPU in a workgroup,
because changing the number of RPU takes some minutes and brings the workgroup off-line - so
how is auto-scaling provided?

Is there somewhere, some harrowing new functionality which actually makes Redshift Serverless,
serverless?

Or…

…is it these claims are made on the basis of the and the only mechanism in provisioned Redshift
which permits clusters to handle additional load without a resize and going off-line, which is that
of Concurrency Scaling Clusters.

I may be wrong, but I do indeed think it’s CSC, and I think absolutely nobody would expect
that the auto-scaling claims published of Redshift Serverless are fact claims made on the back
of Concurrency Scaling Clusters.

AutoWLM, SYS_QUERY_HISTORY and CSC First, I am assuming AutoWLM is in use, because
I can’t imagine for one second it would not be - for it not to be, we’d be looking at some sort
of default set up, say the usual one queue with five slots, and given how much time AWS have
spent on AutoWLM, the idea it would not be in use just doesn’t fly.

I spent some time trying to obtain evidence that Concurrency Scaling Clusters (CSC) were in
use.

I am able, and always have been, to simply and fully reliably induce the use of a CSC cluster on
a normal Redshift cluster, when that cluster is using manual WLM.

This is done by configuring a single queue only, giving it one slot, activating CSC on that queue,
issuing a long running query (which fills that slot) and then issuing a second query. The second
query induces a CSC cluster, and runs on the CSC cluster.
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My next step then was to find a method to induce a CSC cluster, on a normal Redshift cluster,
when AutoWLM is in use, as AutoWLM will be in use on workgroups; and then having done so,
to run that method on a workgroup.

I was unable to develop such a method.

I could not get a normal Redshift cluster, with AutoWLM, to use CSC.

Instead, I found AutoWLM was queuing the test queries in the single queue, when to my eye
those queries could and should have been running in parallel (they were inserts, each insert going
to a different table).

I also found that AutoWLM would, while test queries were running, for my manual selects
actually add an extra slot to the single queue, run the select in that slot, and then remove that
extra slot.

Given this behaviour, I could not get CSC to occur, and as such, I have not been able to prove
CSC occurs on Serverless.

The work done to try to induce CSC use with AutoWLM led to my very first investigations,
at all, into AutoWLM, which have, to the limited extent those investigations have progressed,
raised questions - in the very limited testing I did, AutoWLM was leaving a lot of parallelism,
and so performance, on the table.

The investigation into AutoWLM is interesting, but not directly relevant to Serverless, so I have
written it up in Appendix B : AutoWLM Investigation.

There is however one piece of circumstantial evidence, for what it’s worth.

There is a system table, a view, sys_query_history, and the SYS views are specifically described
as being for Serverless, in which we we find the column compute_type, which is defined in the
official docs as;

Indicates whether the query runs on the main cluster or concurrency scaling cluster.
Possible values are primary (query runs on the main cluster) or primary-scale (query
runs on the concurrency cluster).

So, in a system table intended for Serverless, we find a column which indicates if CSC was used
for a query.

Of course, it’s circumstantial only. Maybe this column is in fact only intended for provisioned
Redshift.

As mentioned before, it’s not possible to inspect the view SQL and see if that provides any clues,
because AWS have censored the view SQL for all SYS views.

Limitations of Concurrency Scaling Clusters I do think CSC will be in use, and so I want
to provide some information about CSC clusters.

Rather like compute slices are half-fat data slices, CSC clusters are half-fat clusters.

There’s a lot CSC clusters cannot do, and although I may be wrong, I am of the view AWS
studiously avoid imparting information regarding limitations to clients.

The extent of these limitations are however revealed and effectively so by the text of a particular
system view, [svl_query_concurrency_scaling_status].
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I’ve included the view text in [Appendix C].

What follows is what is returned by grepping the view text for the string Concurrency Scaling
ineligible query.
THEN CAST('Concurrency Scaling ineligible query - Bootstrap user query' AS text)
THEN CAST('Concurrency Scaling ineligible query - System temporary table accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - User temporary table accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - System table accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Query is an Unsupported DML' AS text)
THEN CAST('Concurrency Scaling ineligible query - No backup table accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Zindex table accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Query uses UDF' AS text)
THEN CAST('Concurrency Scaling ineligible query - Catalog tables accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Dirty table accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Direct dispatched query' AS text)
THEN CAST('Concurrency Scaling ineligible query - No tables accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Spectrum queries are disabled' AS text)
THEN CAST('Concurrency Scaling ineligible query - Function not supported ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Instance type not supported ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Burst temporarily disabled ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Unload queries are disabled ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Unsupported unload type ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Non VPC clusters cannot burst ' AS text)
THEN CAST('Concurrency Scaling ineligible query - VPCE not setup ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Query has state on Main cluster ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Query is inelegible for bursting Volt CTAS ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Resource blacklisted ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Non-retryable VoltTT queries are blacklisted ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Query is retrying on Main cluster ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Cannot burst Volt-created CTAS using cursors ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Unsupported VoltTT Utility query ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Write query generating Volt TTs ' AS text)
THEN CAST('Concurrency Scaling ineligible query - VoltTT query with invalid state ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Explain query generating Volt TTs ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Bursting Volt-generated queries is disabled ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Resource of VoltTT UNLOAD is blacklisted ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Multiple pre-Volt query trees ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Target table is DistAll/DistAutoAll ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Table that has diststyle changed in current txn accessed ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Cannot burst spectrum copy ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Dirty transaction tables accessed ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Table that has identity column as a target table ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Datasharing remote tables accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Target table with comp update' AS text)
THEN CAST('Concurrency Scaling ineligible query - Nested tables accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - Copy from EMR ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Table that has column encode changed in current txn accessed ' AS text)
THEN CAST('Concurrency Scaling ineligible query - MV refresh disabled ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Too many concurrent writes ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Main cluster too big for writes ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Datasharing VoltTT ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Target table has super/geo column ' AS text)
THEN CAST('Concurrency Scaling ineligible query - Datasharing with burst-write' AS text)
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THEN CAST('Concurrency Scaling ineligible query - CTAS with burst-write' AS text)
THEN CAST('Concurrency Scaling ineligible query - COPY on tables with identity columns' AS text)
THEN CAST('Concurrency Scaling ineligible query - Datasharing query with cursor' AS text)
THEN CAST('Concurrency Scaling ineligible query - Burst MERGE is disabled' AS text)
THEN CAST('Concurrency Scaling ineligible query - Redshift Table via Lake Formation accessed' AS text)
THEN CAST('Concurrency Scaling ineligible query - COPY on table with default value column' AS text)
ELSE CAST('Concurrency Scaling ineligible query - Unknown status' AS text)

We see there are a lot of ways in which a query cannot be run on a CSC cluster. Even I was
surprised, when I found this code, by how many.

(Note that somewhere included in this list of forbidden queries is that Python UDFs cannot run
on CSC clusters. I do not know if Lambda UDF can, or cannot, but I would suspect not - I
think the code will be stored on the leader node of the main cluster, which is the reason Python
queries cannot be run on CSC clusters.)

I was surprised to see, at it seems, that CSC clusters cannot run queries which access tables
containing geography or geometry columns. To my knowledge, this is not documented.

Of all these issues, that which and always has concerned me most is this;

THEN CAST('Concurrency Scaling ineligible query - Dirty table accessed' AS
text)

To my eye, this means the CSC cluster has not yet caught up on changes made to a table, and
so cannot run queries which use that table.

The question is - how long does it take changes to propagate to CSC clusters? milliseconds?
seconds? many seconds? longer? presumably it depends on how much data has changed. What
if a table keeps changing?

It’s a critical question when you’re designing a system and you’re thinking to use CSC - well,
that is, if you’re doing more than just putting your hands over your eyes and praying it all works
just fine while you hand the money over.

Serverless vs Provisioned Pricing

Now we have a sound-looking estimate for pricing, we can make some direct comparisons between
the costs of provisioned and Serverless clusters.

I will use now the 16 NRPU (16 node) workgroup as the working example to compare costs
between a provisioned cluster and a workgroup, as this is the only size where a workgroup runs
efficiently (no compute slices, no excess disk space overheads) and so of all workgroups can most
be directly compared to provisioned clusters brought up directly at their intended size, although
we must still remember that for Serverless there are inefficiencies introduced by AutoWLM and
CSC.

16 nodes of ra3.8xlarge running for one hour in a provisioned cluster costs 104.32 USD.

Assuming AutoWLM does not invoke CSC and will simply run ten queries concurrently for one
hour in a Serverless workgroup, a 16 NRPU (16 node) workgroup running for one hour costs
46.08 USD.

I have no idea in Serverless when or upon what criteria CSC clusters will be invoked, and each
CSC cluster will be billed at the same rate as the main cluster. If AutoWLM decides to spill a
single query over into a CSC cluster, that will double your costs for the duration of that query.
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Serverless is on the face of it substantially cheaper than Provisioned, and goes to zero with zero
use, but we have to take into consideration the inefficiencies introduced by elastic resize, which
become more severe the more the cluster deviates from 16 NRPU, that Serverless uses AutoWLM
(which I advise clients never to use, and to my eye is a deal-breaker), the use of CSC (which is
a band-aid for an incorrectly operated Redshift cluster), as well as the unknown nature of CSC
use, and the 60 second minimum charge.

The consistent feedback I get from Redshift admin is that they try AutoWLM, it works fine for
a bit, but then sooner or later a big backlog of queries forms, and in the end they turn it off -
and AutoWLM as we have it now is at least the third re-write to AutoWLM. The earlier versions
were much less successful, and users trying them out rapidly - I might say frantically - reverted.

Note that the workgroup will pause after an hour of idle time, and then need some time to resume
operations, and you may well need to accommodate for this in your ETL system; it’s often not
a drop-in replacement.

Also, Serverless has no concept of maintenance and current release tracks - you have current, like
it or not. The maintenance track was introduced a few years ago, after a particularly bad run
of buggy Redshift releases, where every release broke some major functionality for some users.
Maintenance was introduced as a way to protect users. Removing it is not an advantage.

Billing for CSC (and Redshift Spectrum, also) are not broken out into separate costs, but are
included in a single cost for Redshift Serverless, so you can’t tell from looking there what’s going
on. I can see no system table which provides this information, either.

There is then the question of VACUUM and ANALYZE, as the background process for auto-vacuum
appears from anecdotal report and from my own investigation to be wholly ineffective - I begin in
fact to suspect it may issue only vacuum delete only, never vacuum sort, which would explain
a lot, but also render it useless as far as sorting is concerned, which renders it useless as far as
the reason for using Redshift is concerned (I have not investigated the background process for
ANALYZE); VACUUM on poorly sorted large tables is a multi-day command, where keeping tables
sorted in central to the correct operation of sorting, and Redshift without correctly operated
sorting makes no sense as a database choice.

All in all, that the cluster goes to zero cost with zero use is a profoundly useful new behaviour,
but we must set against that the blunders of the implementation, outlined above.

It would have been much better if AWS had simply introduced zero-zero billing on Provisioned
clusters. This would avoid many of the weaknesses and drawbacks of Serverless Redshift, which
wholly unnecessarily devalue the Serverless product.

Observations
Capital to Current Billing

I may be wrong, but to my eye there has been a progression on AWS’s part from billing arrange-
ments which involve significant and usually up-front capital expenditure, which must be signed
off, to arrangements which do not involve capital expenditure and so sign off, but are presented
as ongoing monthly costs.

To begin with, there were dc and ds node types, and when a cluster needs more capacity, more
nodes must be purchased. When the team managing Redshift wants to buy new nodes, up-front,
for a year, it is a significant cost, and it will require approval, and this of course acts to discourage
sales.
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Then ra3 nodes arrived. These use cloud for storage, and cloud storage is billed as a monthly
cost which rises as storage use rises, and so although there are still one-off, up-front charges for
more nodes, part of the price has now changed form, to a monthly running cost, which varies as
storage use varies, and does not require sign-off.

Of course, storage use typically rises over time, and in the previous arrangement, would require
regular and so visible purchases of new nodes, where-as a monthly running cost only requires a
sign-off in the first place, not every month, nor for the relatively small increase in price which
comes each month.

With now Serverless, the entire price of the system is a monthly running cost, both nodes and
storage.

This is great for dev teams; they no longer have to get capital purchases past accounts. It’s bad
for the organization as a whole, because Serverless is expensive and inefficient and a significant
cost has become rather invisible.

Serverless Quality and Reliability Issues

In the course of this investigation, both learning to operate Serverless through the Redshift
WWW console, and then operating Serverless via boto3 in the test script, I encountered both
minor and major quality and reliability issues.

To begin with the minor but question-raising, look at this dialog window, from the Redshift
WWW console.
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Look at the first line of text, at the top, in bold, Deletewg-u5-1-singleton?.

Note the missing space.
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Redshift Serverless had at the time of the screenshot been out for about a year, and this has not
been fixed.

I may be wrong, but I think what I think happens at AWS, at least with the Redshift UI and
the docs, is that when a project is active, someone is assigned to do the work on and only on
that project, and once the project is gone, that person is gone, and no other work is done.

I think this then is how even trivial - but highly visible - bugs such as this go unfixed.

The Redshift team seems to be arranged in such a way that the team itself lacks certain vital
skills, such as those to modify the Redshift WWW console, or the documentation.

Another example of this is that in provisioned Redshift, there’s a missing documentation page,
for alter function. It’s just not there. I noticed this years ago. A while ago I noticed someone
raised an issue on GitHub against the docs, stating this page is missing - I think this was in 2019,
something like that. It’s still not there.

(Note the documentation in general is woefully decayed; the pages for the system tables are now,
to my eye, about 15% incorrect even simply in their listing of the columns and data types for
the system tables. It’s obviously a case where given the very large number of system tables
automatic generation of documentation is the only way to maintain correctness, but this is not
done; it’s manually maintained.)

Next, a slightly more serious issue.

On that same screenshot, note where the checkbox is ticked, for Delete the associated namespace
ns-u5-1 singleton.

Well, that option, to delete the namespace when you delete the workgroup, never works.

There’s always an error, telling you the namespace could not be deleted because the workspace
exists. Here’s a screenshot showing that error.
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You always have to manually delete the namespace, once the workgroup has gone and the names-
pace also stops being in the modifying state.

Now for the serious stuff.

First, in my test script, if I fired up seven workgroups in parallel (each entirely independent of
the other - different boto3 client, different thread, etc), I could cause two of the workgroups to
become stuck.

Here’s a screenshot of four stuck workgroups.

I contacted billing support (I do not keep a technical support contract) and first they replied by
telling me me that after I finish with a workgroup, I shut it down.

Well, they’re billing support, not technical, so fair’s fair :-)

After I explained more, they told me they had contacted technical support.

After a week, nothing had happened, and I had two more stuck workgroups.

After another week, the first two workgroups had gone - I’ve no idea how, billing support were
still telling me they were going to chase technical support.

I still have two stuck workgroups, I suspect they will eventually go away by themselves.

It is not obvious to me how any operations by the client could or should induce a workgroup to
become stuck. Something looks to be seriously amiss.

Next, when developing the test script, what I found was that it was impossible to obtain reliable
concurrent bring-up, or shut-down, of multiple workgroups. Workgroups would get stuck, or
boto command would by the looks of it silently fail, so a shut-down would never actually occur,
and so on.

I had to serialize workgroup bring-up and shut-down.
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I wanted to operate on all seven test workgroups at once (and I can do this just fine with
provisioned Redshift), but with Serverless, it always led to problems of one kind or another. It
simply was not reliable.

Next, boto3 was particularly difficult to work with - no, let me improve that to excruciating;
boto3 is difficult to work with normally, but this was on a whole new level.

When you create a workgroup, you call the boto3 function to create a workgroup.

The call is issued, and then you wait for the workgroup to become available.

What you then find is that being available does not mean the workgroup can be connected to.

So now you need a loop around your connection code, until that code succeeds.

Now you’ve connected, you issue queries.

Once you’re done with queries, you then issue the function call to delete the workgroup.

Occasionally, this function call silently fails - no exceptions, no errors, just doesn’t work. The
workgroup remains in the available state. Often on test runs, before I serialized, I had to
manually delete such workgroups, where the boto3 function to do so had not worked, and the
test script was now stuck, waiting forever for a workgroup which was not being deleted, to be
deleted.

This still happens after serializing, but much less often.

So, when the shut-down command does work (which is most of the time, when you’re serialized),
you then loop, waiting for the workgroup to no longer be enumerated, which is how you know
the workgroup has gone.

However, it turns out that the workgroup no longer being enumerated is not enough for the
namespace to be deleted. If you try to do so after you first see the workgroup no longer exists,
namespace deletion fails.

So you then need a loop on the command to delete the namespace, until that command succeeds.

Figuring this all out was exceedingly time consuming. These issues should not exist, and if they
do, they should be documented, so rest of the world does not, one by one, have to independently
figure these issues out.
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Summary
Primary Evidence
Workgroups and Namespaces

Workgroups take a few minutes to create, and to resize, and some to several minutes to delete,
and after creation is purportedly complete, a minute or two before they can actually be connected
to.

Namespaces are created immediately, but take some to several minutes (more than ten minutes
on occasion) to delete.

Creation times are pretty consistent, but there seems to be no rhyme or reason to the length of
the delete times, for workgroups or for namespaces; seven back-to-back repetitions of deleting a
128 RPU workgroup took between 146 seconds and 537 seconds.

At creation, workgroups have their compute power specified, and this is not dynamic; a resize
operation is required to change the compute assigned to a workgroup, which takes some minutes,
during which the workgroup goes off-line.

A workgroup can be associated with (and so operates upon) one and only one namespace at a
time, and a namespace can be associated with (and so be operated upon) by one and only one
workgroup at a time.

Leader Node and Worker Node

With provisioned Redshift, there exists a query which when run on a leader node, and when run
on the worker nodes, reveals a difference between the leader node and worker nodes, this being
in how dates prior to 1 AD are formatted.

This query, when issued to a Serverless workgroup in exactly the way as is necessary on a
provisioned cluster to ensure it runs on the leader node only, produces exactly the same output
as on a provisioned cluster (the date formatted using AD/BC), and when run a second time,
in exactly the way necessary on a provisioned cluster to ensure it runs on the worker nodes,
produces exactly the same output as on a provisioned cluster (the date formatted using ISO
8001).

Slices

It is almost problematic to obtain information from the system tables about what is going on
under the hood in Serverless, because the very large majority of the Redshift Serverless system
tables have made inaccessible to users, and even the source code of such views as remain have
been censored; the function which shows view SQL now returns an error message.

However, it has proved possible using the function slice_num() and through the column size
in the table svv_table_info to obtain enough information about slice use in workgroups to
demonstrate beyond any reasonable doubt that all workgroups are in the first instance created
with 16 nodes, of 8 slices each, and then elastic resized to the workgroup size the user specified
on workgroup creation, which is to say, workgroups must be ordinary, normal Redshift clusters.

A 128 RPU workgroup is 16 nodes of 8 slices, which is to say, 128 slices.

1 RPU is 1 slice.
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This explains why the compute limit was originally 32 RPU to 512 RPU (inclusive both ends),
with a default of 128 (which is 2 TB of memory - a remarkably large default); the default is
the mid-point of a 4x elastic resize range, where we see also that a 4x resize is permitted with
a provisioned cluster to ra3.4xlarge (four slices) and ra3.16xlarge (sixteen slices), and so is
likely permitted also to the eight slice node type (which we can easily imagine being ra3.8xlarge)
being used by the 32 to 512 RPU workgroups.

For workgroups in the range 8 to 24 RPU (inclusive both ends), which were introduced some
months after Serverless went to GA (I think because the previous smallest workgroup was still
expensive enough to be seen by AWS as discouraging uptake), the node type is different, and is
a type with 4 slices (i.e. ra3.4xlarge), where here every 8 RPU gives 2 nodes, each with 4 slices.
By using 2 nodes for the smallest workgroups, the devs avoided using a single node cluster (you
should never use a single node cluster).

This means the smallest (and so I suspect most common) workgroup, of 8 RPU, which is 2 nodes
of 4 slices, has sixty-four slices per node - a staggering 16x elastic resize.

To give perspective to this, the maximum permitted elastic resize change to AWS users is 4x,
where as an example, the worst case (largest per-node slice burden) for an ra3.4xlarge cluster
is to go from 32 nodes with 4 slices each down to 8 nodes with 16 slices each.

With 8 RPU, we have 2 ra3.4xlarge nodes with 64 slices each.

The reason for the usual 4x limit is that elastic resizing a cluster introduces inefficiencies.

The nature of the inefficiencies differs depending on whether a cluster is made larger or made
smaller than the original cluster. The inefficiencies become greater as the degree of cluster resize
(in either direction) becomes larger.

Explaining the nature of the inefficiencies requires too much explanation of fundamental Redshift
concepts for a summary. The explanations are given in the Discussion.

To put it briefly, as a cluster becomes increasingly larger, it becomes increasingly inefficient with
compute and disk I/O, and as a cluster becomes increasingly smaller, it becomes increasingly
inefficient with disk space overheads for tables.

A 512 RPU cluster, the largest, consists of 128 real, full-fat slices (“data slices”), and 384 “filler”,
half-fat slices (“compute slices”), which do not store data on disk and participate in only a sub-
set of the work which normal slices perform. A provisioned cluster of the same size has a full
complement of 512 data slices.

An 8 RPU workgroup will for the worst case (a table with one block per column, e.g. a small table,
perhaps 250k rows or less) consume 256mb of disk per column, compared to a provisioned cluster
of the same size, which consumes 16mb of disk per column. (Storage is very cheap, so the cost
of it is not such an issue, but I am concerned the performance impact, especially with Serverless
where charging is based in part on query duration, is significant - I have not investigated this, so
my concern is reasonable conjecture only.)

Only the original, 128 RPU workgroup, 16 node cluster, is fully efficient (but here excepting
that it will be using AutoWLM, which I consider inefficient and even problematic, and also CSC,
which I consider limited and improper.)

This means that RPUs are not all equal, despite being priced equally, and the product being
termed Serverless.
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Secondary Evidence
Idle Workgroups

Once a workgroup has been idle for 60 minutes, a new connection to the workgroup occurs at the
normal speed of a second or less, but a then immediately issued test query takes a few tens of
seconds to complete, with the same query issued immediately again after the first query completes
running at the expected speed of a fraction of a second (query result cache was disabled).

Additionally, if the attempt is made immediately after the second query to delete the workgroup,
the delete command fails (for about 20 seconds, in my tests) because an “operation is in progress
on the workgroup”.

None of this makes sense for a serverless system, is easy to explain if we imagine that under the
hood workgroups are ordinary, normal Redshift clusters : if no queries are being issued, all of
the hardware for the cluster is provisioned and cannot be used by another user, but no income
is accruing, so the cluster must sooner or later be shut down or suspended in some way.

Note also here that Provisioned Redshift allows the cluster to listen on any port, while Serverless
limits ports to the ranges 5431 to 5455 and 8191 to 8215.

Given this new limitation in ports, and given the immediate response when connecting to a
workgroup/cluster combined with the delay before the first query executes, I think there is now
a proxy in from of the cluster, and connections to the workgroup in fact go to the proxy, giving
the appearance of an immediate connection, and the proxy then having received a connection for
a shut down workgroup/cluster, triggers the bring-up of that workgroup/cluster, which honours
the query once it is able to do so.

System Tables

The very large majority of the system tables have been made inaccessible.

The PG system tables remain, as do most of the SVV tables, and all of the SYS tables, where the
SVV and SYS system tables are actually views.

The PG tables contain no information about what Serverless is doing, or how; of the SVV tables,
those few which carry such information have been made inaccessible.

The SYS tables I think were intended for Serverless, and have been created in the first place in
a sanitized form, carrying no information about what and how.

Furthermore, AWS have taken the extraordinary step of censoring the SQL of the system tables
which do remain. There is a function in Postgres which displays the SQL of a view. For the few
remaining system table views, this function does not return the SQL text, but rather a message
informing the caller the text is not available.

This is astounding. Redshift has been out since about 2012, and never has this happened before
- but it happens now, on Serverless.

However, we can still figure out some useful information about these views, because we are
allowed to query the views themselves, so we can issue explain select * from [view_name];,
and the query plan emitted will tell us which real, actual tables are being scanned.

We can then use the PG system tables to enumerate the columns of those tables, and see what
we think of their columns, and how those columns relate to the columns in the view.
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Having done this, what I find is that a number of the underlying tables have columns for pid
(short for process ID, a leader node concept), node and slice, but that these columns have and
have always been removed from the views which use these tables.

To put it more plainly; the underlying actual tables for Serverless do contain information about
pids and about nodes and slices, but this information is removed from the views which the user
is allowed to access (and users are not allowed to access the SQL of the system table views).

Finally, there is a system table, SYS_SERVERLESS_USAGE, which is specifically for billing infor-
mation about Serverless, which uses two tables, and in one of those tables we find the columns
cluster_rpus, instance_type, num_nodes. It’s not obvious why a serverless system would contain
a column named cluster_rpus, but it is very obvious why it would be so if workgroups are in
fact ordinary, normal Redshift clusters.

To my eye, AWS have made a deliberate and comprehensive effort to obscure from users that
they are running an ordinary, normal Redshift cluster.

Cluster/Workgroup Limits

Provisioned Redshift specifies a number of system-wide limits, such as the maximum number of
tables, schemas, connections and so on.

Limit Serverless Provisioned
Connections 2,000 2,000
Databases 60 100
Schemas 9,900 9,900
Tables 200,000 200,000

These limits are almost all identical between provisioned Redshift and Redshift Serverless, which
is hard to explain if Serverless is something new and genuinely serverless, but obviously explained
if Serverless is actually an ordinary, normal Redshift cluster.

Namespaces

A namespace represents the full state of the data in a cluster; all the databases, all their schemas,
tables and views and so on, all groups, all users, etc - in short, it is exactly like a snapshot.

Namespaces are created almost instantly, but take several minutes - sometimes most of ten
minutes - to delete. (I never use snapshots, and I did not for this document investigate how long
they take to delete.)

A namespace can be operated upon by one and only one workgroup at a time, and a workgroup
can operate upon one and only one namespace at a time.

It seems clear simply from this behaviour that a namespace can be implemented by restricting
a snapshot such that it operates with and only with a single workgroup at a time.

Deductions
Workgroup Node Types

Let’s begin with a table of the existing current generation, ra3, node types.
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Name Slices
Memory
(GB/slice)

Memory
(GB/node)

Resize
(down/up)

Max
Nodes

RMS
(TB/node)

Price
(USD)

ra3.xlplus 2 16 32 2x/4x 16/32 32 1.086
ra3.4xlarge 4 24 96 4x/4x 32/64 128 3.26
ra3.16xlarge16 24 384 4x/4x 128/128 128 13.04

The Resize column shows two values, the first is the maximum reduction resize, the second is
the maximum increase in size. The Max Nodes column shows two values, the first being the
maximum number of nodes when bringing a cluster up from scratch, the second showing the
maximum number allowed by an elastic resize. No cluster can ever be larger than 128 nodes, by
any means. Elastic resize has made life complicated.

We have seen the 32 to 512 RPU workgroups use an 8 slice node, which if we follow the naming
convention will be an ra3.8xlarge.

The official docs state that 1 RPU provides 16 GB of memory, which would give 128 GB of
memory for 8 slices. This is the memory available to an ra3.xlplus, which has 2 slices, and
I think this a priori too little memory for 8 slices, and looking at the specifications for the
ra3.4xlarge and ra3.16xlarge node types, we see these both, with 4 and 16 slices respectively,
have 24 GB per slice. I think this, 24 GB, is actually the correct value.

(Here we must note that a 32 RPU workgroup has 4 nodes of 8 slices with 24 GB of per node,
whereas a 24 RPU workgroup has 6 nodes of 4 slices with 24 GB of memory per node.)

Additionally, the official docs write vaguely and imprecisely about how much RMS store is
available for workgroups.

With provisioned Redshift, RMS is on a per-node basis, with the 4x and 16x node types providing
128 TB of RMS per-node.

I think the docs regarding RMS are vague because the author of course cannot say anything is
per-node, not for Serverless, and once we look through this obfuscation, it looks like the author
thought that RMS is provisioned at 32 TB per node - again, the value for ra3.xlplus.

I think this also is wrong, and that the actual value is 128 TB of RMS per node, just as it is for
ra3.4xlarge and ra16x.large.

Given this, we can slot the workgroup node type into the table, like so;

Name Slices
Memory
(GB/slice)

Memory
(GB/node)

Resize
(down/up)

Max
Nodes

RMS
(TB/node)

Price
(USD)

ra3.xlplus 2 16 32 2x/4x 16/32 32 1.086
ra3.4xlarge 4 24 96 4x/4x 32/64 128 3.26
ra3.8xlarge 8 24 192 4x/16x 64/128 128 6.52
ra3.16xlarge16 24 384 4x/4x 128/128 128 13.04

And this, critically, allows us also to extrapolate a pricing, at 6.52 USD per hour, which permits
us now to directly compare Serverless and Provisioned pricing.
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Claims of Serverless Dynamic Auto-Scaling

In the documentation for Serverless I can find three vague, woolly statements claiming or implying
dynamic auto-scaling.

No information is provided, at all, is provided beyond this; no indication of limits, nature, cost,
nothing. All there is are simple, usually one-sentence assertions that dynamic auto-scaling exists.

It is however clear that dynamic auto-scaling cannot be implemented by the number of RPUs
assigned to a workgroup, as changing this is a manual operation, which takes some minutes, and
takes the workgroup off-line (i.e. an elastic resize).

This leaves the and the only mechanism in provisioned Redshift - and all the evidence points and
to my eye irrefutably to workgroups being ordinary, normal Redshift clusters - which permits
clusters to handle additional load without a resize and going off-line : that of Concurrency Scaling
Clusters.

I think absolutely nobody would expect that the auto-scaling claims published of Redshift Server-
less are fact made on the back of the well-known, and long-established mechanism of Concurrency
Scaling Clusters.

In fact, in the documentation page AWS provide which compares Serverless with Provisioned,
there is a table where each rows which compares an aspects of each, one of which I assert is
comparing AutoWLM and CSC to each other on both sides.

Serverless Provisioned
Amazon Redshift can scale for periods of
heavy load. Amazon Redshift Serverless also
can scale to meet intermittent periods of high
load. Amazon Redshift Serverless
automatically manages resources efficiently
and scales, based on workloads, within the
thresholds of cost controls.

With a provisioned data warehouse, you
enable concurrency scaling on your cluster to
handle periods of heavy load.

Finally, note that Concurrency Scaling Clusters, like compute slices, are skimmed-milk clusters,
and that AutoWLM is a black box, and it is completely unclear how and when it does, or does
not, invoke CSC clusters; and all of this affects the efficiency of the cluster, and so the price you
pay.

Serverless vs Provisioned Pricing

All prices are for us-east-1.

With Serverless, 128 RPU (which is to say, 16 nodes), which is the only cluster size which does
not experience elastic resize, used for one hour with no CSC, costs 46.08 USD.

16 nodes of the same node type used in Serverless, ra3.8xlarge, can be seen to cost 6.52 USD
per hour, and so used for one hour with no CSC would cost 104.32 USD.

Provisioned charges at the on-demand rate for CSC clusters. Serverless charges at the rate of
the workgroup. With Serverless, AutoWLM is in use, which decides when to use or not use CSC,
and there is no control or visibility in billing or in the system tables, of CSC use. If AutoWLM
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decides to spill a single query over into a CSC cluster, you are now paying for another workgroup,
for the duration of that query.

Serverless is on the face of it substantially cheaper than Provisioned, and goes to zero with zero
use, but we have to take into consideration the inefficiencies introduced by elastic resize, which
become more severe the more the cluster deviates from 16 NRPU (the largest workgroup is 384
compute slices and only 128 data slices), that Serverless uses AutoWLM (which I advise clients
never to use, and to my eye is a deal-breaker), the use of CSC (which is a band-aid for an
incorrectly operated Redshift cluster), as well as the unknown nature of CSC use, and the 60
second minimum charge.

All in all, that the cluster goes to zero cost with zero use is a profoundly useful new behaviour,
but we must set against that the blunders of the implementation, outlined above.

It would have been much better if AWS had simply introduced zero-zero billing on Provisioned
clusters. This would avoid many of the weaknesses and drawbacks of Serverless Redshift, which
wholly unnecessarily devalue the Serverless product.

Observations
Capital to Current Billing

To my eye, there has been with Redshift a general change, over time, from capital billing to cur-
rent billing, which makes life easier for dev teams, and improves revenue for AWS, but generally
I suspect increases costs.

By this I mean to say that Redshift originally consisted of and only of node types which came
with storage, and so when storage was exhausted, a new node or nodes had to be added to a
cluster. These are usually by businesses purchased with a one year reservation, and so are a
significant single cost and must be approved.

Obtaining approval is a bureaucratic process, which hinders purchasing - both in the time and
effort it takes, and in that approval may not be granted.

The first step toward current billing were the ra3 nodes, which move storage to the cloud,
charging 24.576 USD per terabyte per month. Accounts will know there is a monthly AWS bill,
which does not require specific authorization or sign-off, unlike purchasing a new node for a year,
and storage costs have now moved into that monthly bill.

Now we have the second step, where Serverless, being billed on a per-query-second basis, has
moved what was the cost of a node for a year into the monthly bill.

Quality and Reliability Issues

In the course of writing this document and its associated test script, I encountered various quality
and reliability issues with Serverless and boto3.

For example, originally, the test script, which runs tests on many workgroups, started many
(typically seven, I recall) workgroups in parallel, ran tests, and shut down the workgroups.

This turned out to consistently caused two workgroups to become stuck in the modifying state.

After a week or so, the first stuck workgroups went away, and another week or so, the second set
went away.
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It should not be possible for anything I do, as a client issuing commands through boto3, to cause
workgroups to become stuck.

Consequently, I have had to serialize workgroup bring-up and shut-down, with the test script at
one point taking nine hours to run, as the cumulative time consumed by workgroup bring-up
and shut-down, and namespace shut-down, became very large (in the end, I did not need all the
tests, and so the test script now is down to about six hours).

In my experience the Python library boto3 is normally difficult to work with, but was particularly
difficult - even for boto3 - with Serverless. Essentially, every boto3 call had to be treated as
unreliable, both in the status it returned (e.g. a cluster is now available), and also when being
called, as often a boto3 call will fail, because although the previous function indicates it has
completed, in fact, it has not, and so following function calls will not work for some time.

Additionally, the Redshift Serverless Console on the AWS web-site, has a blatantly obvious typo,
a missing space in an important dialog, and a somewhat more serious issue, whereby when
deleting a workgroup, if the option provided to delete the associated namespace is also chosen,
the delete of the namespace always fails. I suspect these problems have existed from day one
of Serverless, and that they have not been fixed is indicative of fundamental weaknesses with
Redshift development.
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Conclusion
Amazon Redshift Serverless is not serverless.

Workgroups are ordinary, normal Redshift clusters.

All workgroups are initially created as a 16 node cluster with 8 slices per node, which is the
default 128 RPU workgroup, and then elastic resized to the size specified by the user.

This is why the original RPU range is 32 to 512 in units of 8 and the default is 128 RPU; the
default is the mid-point of a 4x elastic resize range, and we see a 128 RPU workgroup being 16
nodes of 8 slices has 128 slices. 1 RPU is 1 slice.

Workgroups do not themselves dynamically auto-scale their number of RPU/slices; to change
means changing the number of nodes, which requires as usual a cluster resize. The claims made by
Serverless of dynamic auto-scaling, I cannot prove to be (due I think to AutoWLM getting in the
way) but I am absolutely certain are based on the well-known and long-established mechanisms
of AutoWLM and Concurrency Scaling Clusters.

Elastic resize inherently introduces inefficiencies.

With elastic resize, when the workgroup is made larger than 128 RPU, new nodes are added, the
number of data slices does not change from that of the original cluster, and the existing data
slices are redistributed over the expanded set of nodes. Any nodes which find themselves with
less slices than given in their specification have the gaps filled in with compute slices, which are
skimmed-milk slices; they store no data on disk and participate in only a few of the types of
work performed by queries. Better than nothing, but not the real thing.

A 512 RPU cluster has 128 data slices and 384 compute slices.

When the workgroup is made smaller than 128 RPU, nodes are removed, the number of data
slices does not change from that of the original cluster, and so the data slices are redistributed
over the reduced set of nodes, leading to a larger number of data slices on a node.

This leads to inefficiency because all disk I/O in Redshift is in one megabyte blocks. Tables are
distributed over data slices (compute slices store no data), are composed of separately stored
columns, and each column has a sorted segment and an unsorted segment.

When writing a single row to a table, that row will go to a single slice, which will write one block
for every column, to both segments.

If we then write one row per slice, we find the disk used is;

[number slices] * [number columns] * [number segments]

All tables have the number of columns specified by the user plus three columns, which belong to
the system.

Where the original cluster has 128 data slices, if we have a table with a total of 5 columns (two
user, three system), and we write one row per slice, we end up with;

128 * 5 * 2 = 1280 blocks

That’s 1.28 gigabytes of disk.

This is the case for as long as we have one block per column per slice, and a block, very roughly
speaking - bearing in mind all the different data types and encodings - could be thought on

73



mean average to have maybe about 150k rows. As such, a lot of small tables are going to be this
inefficient.

Every workgroup, larger or smaller than the original, always uses this much disk for its tables,
because the number of data slices never changes. Larger workgroups are failing to utilize the
hardware they have available, smaller workgroups are using excess disk space.

Some months after the original release of Serverless, workgroup sizes 8, 16 and 24 RPU were
introduced. These workgroups use a smaller node type, with 4 slices, and each unit of 8 RPU is
two nodes.

The 8 RPU workgroup is then a 16 node 8 slice cluster which has been elastic resized to 2 nodes
of 4 slices, giving a staggering sixty-four data slices per node. This is an 8x elastic resize. To
give colour to this, the largest elastic resize permitted to normal users with ra3.4xlarge (the
publicly available 4 slice current generation Redshift node), goes from 16 nodes of 4 slices down
to 4 nodes of 16 slices.

If a 8 RPU workgroup has in the first place been created as 2 nodes of 4 slices, we would have
for our 5 column table;

8 * 5 * 2 = 80 blocks

Which is over a gigabyte less disk used, for this one test table.

Users pay for that gigabyte in their cloud storage costs, but such costs seem very small (about 25
USD per terabyte-month) but also in performance, where so much more network I/O and disk
I/O has to be performed.

Now, it must be understood that the situation of one block per slice is the worse-case scenario.
As we write more and more rows to the table, there will be more and more blocks, and the
overhead of the partially filled final block, and the single empty unsorted block per column of a
sorted table, becomes an ever smaller and smaller fraction of the total table size.

However, small tables, roughly 150k or less rows, which are one block per slice per column and
are the worst case, are common, and their combined overheads can be huge. (With one client,
on ds2 nodes, I converted all small tables to be unsorted, which removes one of the segments.
This saved 20% disk space, and saved them needing to buy 3 nodes, which was worth about 130k
USD per year, one year reservation prices.)

Finally, note also that when a node has more slices than given in its specification, it runs only
the number of slices equal to its specification. As such, the 8 RPU workgroup, despite having 64
slices per node, runs 4 slices only. These 4 slices (a slice is one running copy of all the processes
which are a query) necessarily read the data from all the other slices on the node, which is less
efficient than having the data distributed over only the number of actually running slices.

It is then that only the original, 128 RPU workgroup, 16 node cluster, is fully efficient, avoid-
ing both compute slices and undue disk overhead and inefficient disk access (but still, barring
AutoWLM and CSC).

This means that all RPUs are not equal, despite being billed for equally, and the product being
marketed as serverless, and the smallest workgroup, 1 NRPU, is the extreme of the inefficiency
induced by resizing to a smaller workgroup.

The node type in use by the 32 to 512 RPU workgroup looks to be what would be named an
ra3.8xlarge, which we can fit into the table of publicly available ra3 node types like so;
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Name Slices
Memory
(GB/slice)

Memory
(GB/node)

Resize
(up/down)

Max
Nodes

RMS
(TB/node)

Price
(USD)

ra3.xlplus 2 16 32 2x/4x 16/32 32 1.086
ra3.4xlarge 4 24 96 4x/4x 32/64 128 3.26
ra3.8xlarge 8 24 192 4x/8x 64/128 128 6.52
ra3.16xlarge16 24 384 4x/4x 128/128 128 13.04

I have extrapolated the price as being mid-way between the 4x and 16x node types, as the 8x
type is in hardware mid-way between the 4x and 16x node types.

Using the 128 RPU workgroup as the comparison point, as this is the only workgroup non-resized
workgroup and so that most able to be directly compared to a Provisioned cluster, we find that
for one hour, with no CSC, a provisioned cluster costs 104.32 USD, while a workgroup costs
46.08 USD.

I have no idea in Serverless when or upon what criteria CSC clusters will be invoked, and each
CSC cluster will be billed at the same rate as the main cluster; if AutoWLM decides to spill a
single query over into a CSC cluster, you are now paying for another workgroup, for the duration
of that query.

Serverless is on the face of it substantially cheaper than Provisioned, and goes to zero with zero
use, but we have to take into consideration the inefficiencies introduced by elastic resize, which
become more severe the more the cluster deviates from 16 NRPU, that Serverless uses AutoWLM
(which I advise clients never to use, and to my eye is a deal-breaker), the use of CSC (which is
a band-aid for an incorrectly operated Redshift cluster), as well as the unknown nature of CSC
use, and the 60 second minimum charge.

All in all, that the cluster goes to zero cost with zero use is a profoundly useful new behaviour,
but we must set against that the blunders of the implementation, outlined above.

It would have been much better if AWS had simply introduced zero-zero billing on Provisioned
clusters. This would avoid many of the weaknesses and drawbacks of Serverless Redshift, which
wholly unnecessarily devalue the Serverless product.

Finally, the very large majority of system tables have in Redshift Serverless been made inaccessi-
ble. There appears to have been a deliberate and comprehensive effort to remove all information
about what Serverless is doing, or how - up to and including the remarkable step of censoring the
SQL of the system table views which do remain; if you use the function which shows the SQL
of a view, it emits not the SQL of the view, but a message informing you the view in question
cannot be examined.

However, we can still figure out some useful information about the remaining views, because
we are allowed to query the views themselves, so we can issue explain select * from
[view_name];, and the query plan emitted will tell us which real, actual tables are being
scanned, and we can then use the PG system tables to enumerate the columns of those tables,
and see what we think of their columns, and how those columns relate to the columns in the
view.

Having done this, a number of the underlying tables have columns for pids, nodes and slices, but
that these columns have and have always been removed from the views which use these tables.
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Credits
1. Currently (2023-10-04) anonymous.

A reader pointed out the error in my understanding of Serverless pricing. That reader
is Stateside, and so although I have asked if they want a credit (everyone is given credit,
but of course it has to be something they actually wish for) they are not yet awake so
cannot reply. The magnitude of the misunderstanding about pricing is large enough I’ve
immediately made the corrections and feel the PDF has to go out, so for now I’ve put this
in as a placeholder. I will release again, updating the credits, once I have a reply from the
reader in question.
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Revision History
v1

• Initial release.

v2
• Corrected misunderstanding regarding Serverless pricing.

Having read the documentation, I understood - incorrectly - that pricing was per-query.
The docs talk about pricing being per RPU-hour, but billed on a per-second basis, where if
a query runs for less than 60 seconds, it is billed for 60 seconds, and this is for a serverless
product. Therefore pricing is per-query - as it is with Athena, and with Lambda.

In fact, it is not. Pricing is per workgroup-second. I still have not found this stated in the
docs; I was pointed to a re:Invent talk where an AWS developer presented a slide which
made this clear.

I could write at length about the issues and ambiguities in the documentation, but there’s
no point, and better ways to spend a life.

The Redshift docs are normally very poor. In the case of Serverless, where they are also
striving to obscure the fact Serverless is not serverless, they are at their worst.
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Appendix A : Raw Results Dump
Note these results are completely unprocessed; they are a raw dump of the results, so the original,
wholly unprocessed data, is available.

The test script is split into three, a set of slow tests, and a set of fast tests, and a set of tests on
a provisioned Redshift cluster.

It used to be the slow tests took about seven hours, because workgroups and boto3 were not
reliable when parallelized, so I had to iterate through a large number of workgroup creations
and deletions, which took a long, long time, but after I’d later developed additional evidence
and the creation/deletion times no longer much mattered, it was fine to reduce the number of
creation/deletion iterations, and so the slow test now takes about three hours.

Nevertheless, it’s still slow enough to keep separate from the fast tests.

The fast tests take about ten minutes, although with some variability, as workgroup creation and
deletion, and namespace deletion, are rather variable.

The provisioned tests were added on last of all, to illustrate a particular behaviour in workgroups,
when they are smaller than 16 NRPU.

As such, all in all, we have three sets of raw results.

First Set of Slow Tests
{'idle_test': {'beginning_of_wait_time': 1687216862.7623107,

'connection_first_query_duration': 27.26804208755493,
'connection_second_query_duration': 0.12465095520019531,
'connection_time': 2.052560806274414,
'end_of_wait_time': 1687220522.7625782},

'resize': {1: {'create_namespace_duration': 0.409212589263916,
'create_workgroup_available_duration': 127.59397530555725,
'create_workgroup_connect_duration': 5.925532102584839,
'delete_namespace_duration': 302.38894510269165,
'delete_workgroup_duration': 159.54181098937988,
'resize_available_duration': 261.23654770851135,
'resize_connect_duration': 1.3217377662658691},

2: {'create_namespace_duration': 0.2731807231903076,
'create_workgroup_available_duration': 127.83186173439026,
'create_workgroup_connect_duration': 93.99888372421265,
'delete_namespace_duration': 146.12539196014404,
'delete_workgroup_duration': 254.6711506843567,
'resize_available_duration': 214.12547516822815,
'resize_connect_duration': 2.4654417037963867},

3: {'create_namespace_duration': 0.41089797019958496,
'create_workgroup_available_duration': 127.80255341529846,
'create_workgroup_connect_duration': 104.72378063201904,
'delete_namespace_duration': 149.59405493736267,
'delete_workgroup_duration': 273.8036949634552,
'resize_available_duration': 223.4217014312744,
'resize_connect_duration': 1.3041656017303467},

4: {'create_namespace_duration': 0.30323123931884766,
'create_workgroup_available_duration': 124.32334208488464,
'create_workgroup_connect_duration': 75.41635346412659,
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'delete_namespace_duration': 264.1939504146576,
'delete_workgroup_duration': 105.22236895561218,
'resize_available_duration': 237.87361240386963,
'resize_connect_duration': 2.4608988761901855},

8: {'create_namespace_duration': 0.37318849563598633,
'create_workgroup_available_duration': 122.82265400886536,
'create_workgroup_connect_duration': 40.22297286987305,
'delete_namespace_duration': 267.475439786911,
'delete_workgroup_duration': 143.2932939529419,
'resize_available_duration': 307.84038615226746,
'resize_connect_duration': 2.2486279010772705},

16: {},
32: {'create_namespace_duration': 0.2790834903717041,

'create_workgroup_available_duration': 158.3465723991394,
'create_workgroup_connect_duration': 8.1436448097229,
'delete_namespace_duration': 537.4131038188934,
'delete_workgroup_duration': 392.1579940319061,
'resize_available_duration': 290.20202445983887,
'resize_connect_duration': 1.7749905586242676},

64: {'create_namespace_duration': 0.5747129917144775,
'create_workgroup_available_duration': 142.00040555000305,
'create_workgroup_connect_duration': 42.092533111572266,
'delete_namespace_duration': 195.5482771396637,
'delete_workgroup_duration': 303.86812567710876,
'resize_available_duration': 221.70308017730713,
'resize_connect_duration': 1.1366949081420898}},

'total_duration': 11070.495510578156}

Second Set of Slow Tests
{1: {'blocks': [[1280]],

'create_namespace_duration': 0.27158045768737793,
'create_workgroup_available_duration': 116.43005561828613,
'create_workgroup_connect_duration': 22.12782907485962,
'delete_namespace_duration': 190.16908884048462,
'delete_workgroup_duration': 314.46830320358276,
'slices': [[0], [1], [2], [3], [64], [65], [66], [67]]},

2: {'blocks': [[1280]],
'create_namespace_duration': 0.28119683265686035,
'create_workgroup_available_duration': 120.54271459579468,
'create_workgroup_connect_duration': 15.95941710472107,
'delete_namespace_duration': 469.62274193763733,
'delete_workgroup_duration': 57.93810534477234,
'slices': [[0],

[1],
[2],
[3],
[32],
[33],
[34],
[35],
[64],
[65],

79



[66],
[67],
[96],
[97],
[98],
[99]]},

3: {'blocks': [[1280]],
'create_namespace_duration': 0.4128589630126953,
'create_workgroup_available_duration': 153.5724790096283,
'create_workgroup_connect_duration': 78.02273607254028,
'delete_namespace_duration': 225.63704991340637,
'delete_workgroup_duration': 284.17035365104675,
'slices': [[0],

[1],
[2],
[3],
[22],
[23],
[24],
[25],
[44],
[45],
[46],
[47],
[65],
[66],
[67],
[68],
[86],
[87],
[88],
[89],
[107],
[108],
[109],
[110]]},

4: {'blocks': [[1280]],
'create_namespace_duration': 0.38789892196655273,
'create_workgroup_available_duration': 122.49102735519409,
'create_workgroup_connect_duration': 79.7402982711792,
'delete_namespace_duration': 663.5637822151184,
'delete_workgroup_duration': 238.34082007408142,
'slices': [[0],

[1],
[2],
[4],
[5],
[6],
[7],
[32],
[33],
[34],
[35],
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[36],
[37],
[38],
[39],
[64],
[65],
[66],
[67],
[68],
[69],
[70],
[71],
[96],
[97],
[99],
[100],
[101]]},

8: {'blocks': [[1280]],
'create_namespace_duration': 0.40954065322875977,
'create_workgroup_available_duration': 121.4271936416626,
'create_workgroup_connect_duration': 69.81401205062866,
'delete_namespace_duration': 130.91410112380981,
'delete_workgroup_duration': 184.42388319969177,
'slices': [[0],

[1],
[2],
[5],
[6],
[7],
[16],
[17],
[18],
[19],
[20],
[21],
[22],
[23],
[32],
[33],
[34],
[35],
[38],
[39],
[48],
[49],
[50],
[51],
[52],
[53],
[54],
[55],
[64],
[65],
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[66],
[67],
[68],
[69],
[70],
[71],
[80],
[81],
[82],
[83],
[84],
[85],
[86],
[96],
[97],
[98],
[99],
[100],
[101],
[102],
[103],
[112],
[113],
[115],
[116],
[117],
[118],
[119]]},

16: {'blocks': [[1280]],
'create_namespace_duration': 0.3628230094909668,
'create_workgroup_available_duration': 122.33415484428406,
'create_workgroup_connect_duration': 23.383538246154785,
'delete_namespace_duration': 197.90971612930298,
'delete_workgroup_duration': 164.1367542743683,
'slices': [[0],

[1],
[3],
[5],
[6],
[8],
[9],
[10],
[11],
[12],
[13],
[14],
[16],
[17],
[20],
[21],
[22],
[26],
[27],

82



[28],
[29],
[30],
[31],
[33],
[35],
[36],
[37],
[38],
[39],
[40],
[42],
[43],
[46],
[47],
[50],
[51],
[52],
[54],
[55],
[58],
[59],
[61],
[62],
[63],
[64],
[66],
[67],
[68],
[69],
[71],
[72],
[73],
[74],
[75],
[76],
[77],
[79],
[80],
[82],
[83],
[84],
[85],
[86],
[87],
[88],
[91],
[93],
[94],
[95],
[96],
[97],
[99],
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[100],
[102],
[103],
[104],
[105],
[106],
[107],
[108],
[109],
[110],
[111],
[113],
[114],
[115],
[116],
[117],
[118],
[119],
[121],
[122],
[125],
[126],
[127]]},

32: {'blocks': [[1280]],
'create_namespace_duration': 0.2426462173461914,
'create_workgroup_available_duration': 158.84450340270996,
'create_workgroup_connect_duration': 3.484558582305908,
'delete_namespace_duration': 154.62592577934265,
'delete_workgroup_duration': 277.4090383052826,
'slices': [[0],

[2],
[5],
[7],
[8],
[10],
[12],
[13],
[15],
[16],
[19],
[20],
[22],
[27],
[30],
[32],
[40],
[44],
[46],
[48],
[49],
[50],
[52],
[53],
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[56],
[58],
[60],
[61],
[64],
[65],
[66],
[69],
[70],
[72],
[73],
[78],
[80],
[84],
[85],
[88],
[93],
[97],
[98],
[100],
[101],
[105],
[109],
[113],
[114],
[116],
[118],
[120],
[121],
[124],
[125],
[126],
[128],
[132],
[134],
[138],
[139],
[141],
[146],
[150],
[154],
[155],
[156],
[157],
[158],
[160],
[161],
[165],
[166],
[167],
[168],
[169],
[175],
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[177],
[194],
[196],
[199],
[202],
[205],
[206],
[207],
[209],
[210],
[213],
[215],
[216],
[218],
[222],
[223],
[226],
[230],
[232],
[234],
[236],
[237],
[238],
[240],
[243],
[244],
[247],
[248],
[254]]},

64: {'blocks': [[1280]],
'create_namespace_duration': 2.6436049938201904,
'create_workgroup_available_duration': 162.94810509681702,
'create_workgroup_connect_duration': 36.03853249549866,
'delete_namespace_duration': 139.958984375,
'delete_workgroup_duration': 149.57489109039307,
'slices': [[2],

[4],
[8],
[10],
[12],
[14],
[16],
[18],
[20],
[21],
[22],
[24],
[31],
[34],
[38],
[40],
[42],
[47],
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[48],
[50],
[52],
[54],
[56],
[62],
[64],
[66],
[68],
[71],
[72],
[74],
[76],
[78],
[80],
[82],
[84],
[88],
[90],
[92],
[94],
[96],
[97],
[99],
[104],
[107],
[112],
[115],
[117],
[118],
[120],
[124],
[126],
[128],
[148],
[151],
[161],
[173],
[176],
[203],
[206],
[210],
[212],
[215],
[223],
[225],
[229],
[236],
[237],
[260],
[261],
[266],
[274],
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[286],
[302],
[304],
[308],
[312],
[314],
[326],
[341],
[345],
[375],
[390],
[411],
[428],
[429],
[434],
[435],
[448],
[452],
[455],
[458],
[460],
[464],
[475],
[497],
[503]]},

'total_duration': 5400.682659864426}

Fast Tests
{'ResponseMetadata': {'HTTPHeaders': {'content-length': '1364',

'content-type': 'application/x-amz-json-1.1',
'date': 'Sun, 18 Jun 2023 15:42:32 GMT',
'x-amzn-requestid': '663da721-58e6-43a3-82bc-831bcc084bc6'},

'HTTPStatusCode': 200,
'RequestId': '663da721-58e6-43a3-82bc-831bcc084bc6',
'RetryAttempts': 0},

'workgroup': {'baseCapacity': 8,
'configParameters': [{'parameterKey': 'auto_mv',

'parameterValue': 'true'},
{'parameterKey': 'datestyle',
'parameterValue': 'ISO, MDY'},
{'parameterKey': 'enable_case_sensitive_identifier',
'parameterValue': 'false'},
{'parameterKey': 'enable_user_activity_logging',
'parameterValue': 'true'},
{'parameterKey': 'query_group',
'parameterValue': 'default'},
{'parameterKey': 'search_path',
'parameterValue': '$user, public'},
{'parameterKey': 'max_query_execution_time',
'parameterValue': '14400'}],

'creationDate': datetime.datetime(2023, 6, 18, 15, 39, 22, 450000, tzinfo=tzutc()),
'endpoint': {'address': 'wg-u5-singleton.113054258080.us-east-1.redshift-serverless.amazonaws.com',
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'port': 5439,
'vpcEndpoints': [{'networkInterfaces': [{'availabilityZone': 'us-east-1a',

'networkInterfaceId': 'eni-0cc68c5783806beb1',
'privateIpAddress': '10.0.0.209',
'subnetId': 'subnet-0d17cfec748d93a6f'}],

'vpcEndpointId': 'vpce-089b71cae8b1ee764',
'vpcId': 'vpc-0ea69c6fc1b412aa8'}]},

'enhancedVpcRouting': False,
'namespaceName': 'ns-u5-singleton',
'publiclyAccessible': True,
'securityGroupIds': ['sg-04527b3477c3cde4b'],
'status': 'DELETING',
'subnetIds': ['subnet-032e9ad380734f725',

'subnet-0933d224f4f307906',
'subnet-0d17cfec748d93a6f'],

'workgroupArn': 'arn:aws:redshift-serverless:us-east-1:113054258080:workgroup/bdb43f37-d471-4719-a00e-e4448337ce54',
'workgroupId': 'bdb43f37-d471-4719-a00e-e4448337ce54',
'workgroupName': 'wg-u5-singleton'}}

wait_for_workgroup_deleted( wg-u5-singleton )
Sleeping... (wg-u5-singleton, 0)
Sleeping... (wg-u5-singleton, 1)
Sleeping... (wg-u5-singleton, 2)
Sleeping... (wg-u5-singleton, 3)
Sleeping... (wg-u5-singleton, 4)
Sleeping... (wg-u5-singleton, 5)
Sleeping... (wg-u5-singleton, 6)
Sleeping... (wg-u5-singleton, 7)
Sleeping... (wg-u5-singleton, 8)
Sleeping... (wg-u5-singleton, 9)
Sleeping... (wg-u5-singleton, 10)
Sleeping... (wg-u5-singleton, 11)
Sleeping... (wg-u5-singleton, 12)
Sleeping... (wg-u5-singleton, 13)
Sleeping... (wg-u5-singleton, 14)
Sleeping... (wg-u5-singleton, 15)
Sleeping... (wg-u5-singleton, 16)
Sleeping... (wg-u5-singleton, 17)
Sleeping... (wg-u5-singleton, 18)
Sleeping... (wg-u5-singleton, 19)
Sleeping... (wg-u5-singleton, 20)
Sleeping... (wg-u5-singleton, 21)
Sleeping... (wg-u5-singleton, 22)
Sleeping... (wg-u5-singleton, 23)
Sleeping... (wg-u5-singleton, 24)
Sleeping... (wg-u5-singleton, 25)
Sleeping... (wg-u5-singleton, 26)
Sleeping... (wg-u5-singleton, 27)
Sleeping... (wg-u5-singleton, 28)
Sleeping... (wg-u5-singleton, 29)
Sleeping... (wg-u5-singleton, 30)
Sleeping... (wg-u5-singleton, 31)
Sleeping... (wg-u5-singleton, 32)
Sleeping... (wg-u5-singleton, 33)
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Sleeping... (wg-u5-singleton, 34)
Sleeping... (wg-u5-singleton, 35)
Sleeping... (wg-u5-singleton, 36)
Sleeping... (wg-u5-singleton, 37)
Sleeping... (wg-u5-singleton, 38)
delete_namespace( ns-u5-singleton )
wait_for_namespace_deleted( ns-u5-singleton )
Sleeping... (ns-u5-singleton, 0)
Sleeping... (ns-u5-singleton, 1)
Sleeping... (ns-u5-singleton, 2)
Sleeping... (ns-u5-singleton, 3)
Sleeping... (ns-u5-singleton, 4)
Sleeping... (ns-u5-singleton, 5)
Sleeping... (ns-u5-singleton, 6)
Sleeping... (ns-u5-singleton, 7)
Sleeping... (ns-u5-singleton, 8)
Sleeping... (ns-u5-singleton, 9)
Sleeping... (ns-u5-singleton, 10)
Sleeping... (ns-u5-singleton, 11)
Sleeping... (ns-u5-singleton, 12)
Sleeping... (ns-u5-singleton, 13)
Sleeping... (ns-u5-singleton, 14)
Sleeping... (ns-u5-singleton, 15)
Sleeping... (ns-u5-singleton, 16)
Sleeping... (ns-u5-singleton, 17)
Sleeping... (ns-u5-singleton, 18)
Sleeping... (ns-u5-singleton, 19)
Sleeping... (ns-u5-singleton, 20)
Sleeping... (ns-u5-singleton, 21)
Sleeping... (ns-u5-singleton, 22)
Sleeping... (ns-u5-singleton, 23)
Sleeping... (ns-u5-singleton, 24)
Sleeping... (ns-u5-singleton, 25)
Sleeping... (ns-u5-singleton, 26)
Sleeping... (ns-u5-singleton, 27)
Sleeping... (ns-u5-singleton, 28)
Sleeping... (ns-u5-singleton, 29)
Sleeping... (ns-u5-singleton, 30)
Sleeping... (ns-u5-singleton, 31)
Sleeping... (ns-u5-singleton, 32)
Sleeping... (ns-u5-singleton, 33)
Sleeping... (ns-u5-singleton, 34)
Sleeping... (ns-u5-singleton, 35)
Sleeping... (ns-u5-singleton, 36)
Sleeping... (ns-u5-singleton, 37)
Sleeping... (ns-u5-singleton, 38)
Sleeping... (ns-u5-singleton, 39)
{'explain_plans': {'pg_catalog.sys_connection_log': [['XN Seq Scan on '

'stll_connection_log '
'(cost=0.00..0.20 '
'rows=20 width=3194)']],

'pg_catalog.sys_copy_job': [['LD Seq Scan on '
'pg_auto_copy_job job_table '
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'(cost=0.00..4.00 rows=400 '
'width=142)']],

'pg_catalog.sys_datashare_change_log': [['XN Subquery Scan '
'sys_datashare_change_log '
'(cost=0.00..3.33 '
'rows=20 '
'width=592)'],
[' -> XN Append '
'(cost=0.00..3.13 '
'rows=20 '
'width=4548)'],
[' -> XN '
'Subquery Scan '
'"*SELECT* 1" '
'(cost=0.00..1.68 '
'rows=10 '
'width=4548)'],
[' -> '
'XN Seq Scan on '
'stll_datashare_changes_producer '
'(cost=0.00..1.58 '
'rows=10 '
'width=4548)'],
[' -> XN '
'Subquery Scan '
'"*SELECT* 2" '
'(cost=0.00..1.45 '
'rows=10 '
'width=4144)'],
[' -> '
'XN Seq Scan on '
'stll_datashare_changes_consumer '
'(cost=0.00..1.35 '
'rows=10 '
'width=4144)']],

'pg_catalog.sys_datashare_usage_consumer': [['XN Seq Scan '
'on '
'stll_datashare_request_consumer '
'(cost=0.00..0.92 '
'rows=1 '
'width=1880)'],
[' Filter: '
'((((api_call '
'<= 5) AND '
'(api_call >= '
'2)) OR '
'((api_call <= '
'15) AND '
'(api_call >= '
'14))) AND '
'(dbtype > '
'0))']],

'pg_catalog.sys_datashare_usage_producer': [['XN Seq Scan '
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'on '
'stll_datashare_request_producer '
'(cost=0.00..0.52 '
'rows=1 '
'width=2960)'],
[' Filter: '
'((((api_call '
'<= 5) AND '
'(api_call >= '
'2)) OR '
'((api_call <= '
'15) AND '
'(api_call >= '
'14))) AND '
'(shareid <> '
'0))']],

'pg_catalog.sys_external_query_detail': [['XN Subquery Scan '
'sys_external_query_detail '
'(cost=0.05..0.12 '
'rows=1 '
'width=12316)'],

[' -> XN '
'HashAggregate '
'(cost=0.05..0.11 '
'rows=1 '
'width=25876)'],

[' -> XN '
'Seq Scan on '
'stll_external_query_detail_base '
'(cost=0.00..0.00 '
'rows=1 '
'width=25876)'],

[' '
'Filter: (user_id '
'> 1)']],

'pg_catalog.sys_integration_activity': [['XN Seq Scan on '
'stll_integration_log '
'(cost=0.00..0.25 '
'rows=19 '
'width=1640)'],
[' Filter: (status '
'<> '
"'parsed'::bpchar)"]],

'pg_catalog.sys_integration_table_state': [['XN Seq Scan on '
'stv_integration_table_state '
'(cost=0.00..0.20 '
'rows=20 '
'width=3100)']],

'pg_catalog.sys_load_detail': [['XN Hash Join '
'DS_BCAST_INNER '
'(cost=19.45..56000036.06 '
'rows=14 width=800)'],
[' Hash Cond: '
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'((("outer".query)::bigint '
'= '
'"inner".rewritten_query_id) '
'AND ("outer".userid = '
'"inner".user_id))'],
[' -> XN Seq Scan on '
'stll_load_commits '
'(cost=0.00..0.40 rows=40 '
'width=796)'],
[' -> XN Hash '
'(cost=18.45..18.45 '
'rows=200 width=20)'],
[' -> XN Subquery '
'Scan l (cost=0.00..18.45 '
'rows=200 width=20)'],
[' -> XN '
'Unique (cost=0.00..16.45 '
'rows=200 width=20)'],
[' -> XN '
'Seq Scan on '
'stll_user_query_map '
'(cost=0.00..9.40 rows=940 '
'width=20)']],

'pg_catalog.sys_load_error_detail': [['XN Hash Left Join '
'DS_BCAST_INNER '
'(cost=160000.84..5760001.23 '
'rows=7 width=2849)'],
[' Hash Cond: '
'("outer".query_id = '
'"inner".query_id)'],
[' -> XN Seq Scan on '
'stll_user_load_error_detail '
'(cost=0.00..0.25 '
'rows=7 width=2809)'],
[' Filter: '
'(user_id > 1)'],
[' -> XN Hash '
'(cost=160000.81..160000.81 '
'rows=10 width=48)'],
[' -> XN '
'Subquery Scan '
'history '
'(cost=160000.64..160000.81 '
'rows=10 width=48)'],
[' -> XN '
'HashAggregate '
'(cost=160000.64..160000.71 '
'rows=10 width=224)'],
[' '
'-> XN Hash Left '
'Join DS_BCAST_INNER '
'(cost=0.00..160000.51 '
'rows=10 width=224)'],
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[' '
'Hash Cond: '
'("outer".query_id = '
'"inner".query_id)'],
[' '
'-> XN Seq Scan on '
'stll_load_history_base '
'(cost=0.00..0.38 '
'rows=10 width=224)'],
[' '
'Filter: (user_id > '
'1)'],
[' '
'-> XN Hash '
'(cost=0.00..0.00 '
'rows=1 width=8)'],
[' '
'-> XN Seq Scan on '
'stv_user_query_state '
'suqs '
'(cost=0.00..0.00 '
'rows=1 width=8)']],

'pg_catalog.sys_load_history': [['XN Subquery Scan '
'sys_load_history '
'(cost=160001.16..160002.06 '
'rows=10 width=272)'],

[' -> XN HashAggregate '
'(cost=160001.16..160001.96 '
'rows=10 width=1504)'],

[' -> XN Hash Left '
'Join DS_BCAST_INNER '
'(cost=0.00..160000.51 '
'rows=10 width=1504)'],

[' Hash Cond: '
'("outer".query_id = '
'"inner".query_id)'],

[' -> XN Seq '
'Scan on '
'stll_load_history_base '
'(cost=0.00..0.38 rows=10 '
'width=1496)'],

[' '
'Filter: (user_id > 1)'],

[' -> XN '
'Hash (cost=0.00..0.00 '
'rows=1 width=8)'],

[' -> '
'XN Seq Scan on '
'stv_user_query_state '
'suqs (cost=0.00..0.00 '
'rows=1 width=8)']],

'pg_catalog.sys_query_detail': [['XN Subquery Scan '
'sys_query_detail '
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'(cost=0.38..56000032.43 '
'rows=28 width=320)'],

[' -> XN Append '
'(cost=0.38..56000032.15 '
'rows=28 width=3807)'],

[' -> XN Subquery '
'Scan "*SELECT* 1" '
'(cost=0.38..0.63 rows=1 '
'width=3807)'],

[' -> XN '
'HashAggregate '
'(cost=0.38..0.62 rows=1 '
'width=3807)'],

[' -> '
'XN Seq Scan on '
'stll_query_detail '
'(cost=0.00..0.30 rows=1 '
'width=3807)'],

[' '
'Filter: ((internal_query '
"= 'f'::bpchar) AND "
'(user_id > 1))'],

[' -> XN Subquery '
'Scan "*SELECT* 2" '
'(cost=56000030.78..56000031.52 '
'rows=27 width=819)'],

[' -> XN '
'HashAggregate '
'(cost=56000030.78..56000031.25 '
'rows=27 width=819)'],

[' -> '
'XN Hash Join '
'DS_BCAST_INNER '
'(cost=23.30..56000030.04 '
'rows=27 width=819)'],

[' '
'Hash Cond: '
'(("outer".query)::bigint '
'= '
'"inner".rewritten_query_id)'],

[' '
'-> XN Seq Scan on '
'stv_exec_state se '
'(cost=0.00..1.00 rows=27 '
'width=811)'],

[' '
'Filter: (userid > 1)'],

[' '
'-> XN Hash '
'(cost=22.80..22.80 '
'rows=200 width=20)'],

[' '
'-> XN Subquery Scan m '
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'(cost=0.00..22.80 '
'rows=200 width=20)'],

[' '
'-> XN Unique '
'(cost=0.00..20.80 '
'rows=200 width=24)'],

[' '
'-> XN Seq Scan on '
'stv_user_query_map '
'(cost=0.00..10.40 '
'rows=1040 width=24)']],

'pg_catalog.sys_query_history': [['XN Subquery Scan '
'derived_table18 '
'(cost=0.00..0.15 rows=2 '
'width=393)'],
[' -> XN Append '
'(cost=0.00..0.05 rows=2 '
'width=15788)'],
[' -> XN Subquery '
'Scan "*SELECT* 1" '
'(cost=0.00..0.02 rows=1 '
'width=15788)'],
[' -> XN Seq '
'Scan on '
'stll_user_query_history '
'(cost=0.00..0.01 rows=1 '
'width=15788)'],
[' '
'Filter: ((internal_query '
"= 'f'::bpchar) AND "
'(query_text <> '
"''::bpchar) AND (status "
"<> 'planning'::bpchar) "
'AND (status <> '
"'queued'::bpchar) AND "
'(status <> '
"'returning'::bpchar) AND "
'(status <> '
"'running'::bpchar))"],
[' -> XN Subquery '
'Scan "*SELECT* 2" '
'(cost=0.00..0.03 rows=1 '
'width=15788)'],
[' -> XN Seq '
'Scan on '
'stv_user_query_state '
'(cost=0.00..0.02 rows=1 '
'width=15788)'],
[' '
'Filter: ((internal_query '
"= 'f'::bpchar) AND "
'((status = '
"'Queued'::bpchar) OR "
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'(status = '
"'Returning'::bpchar) OR "
'(status = '
"'Running'::bpchar) OR "
'(status = '
"'planning'::bpchar) OR "
'(status = '
"'running'::bpchar)) AND "
'(end_time < start_time) '
'AND (query_text <> '
"''::bpchar))"]],

'pg_catalog.sys_query_text': [['XN Seq Scan on '
'stll_user_query_text '
'(cost=0.00..1.10 rows=110 '
'width=640)']],

'pg_catalog.sys_serverless_usage': [['XN Subquery Scan '
'sys_serverless_usage '
'(cost=1000333704889.90..1000333704896.90 '
'rows=200 width=56)'],
[' -> XN Window '
'(cost=1000333704889.90..1000333704894.90 '
'rows=200 width=56)'],
[' Order: '
'start_time'],
[' -> XN Sort '
'(cost=1000333704889.90..1000333704890.40 '
'rows=200 width=56)'],
[' Sort '
'Key: start_time'],
[' -> XN '
'Network '
'(cost=333704879.26..333704882.26 '
'rows=200 width=56)'],
[' '
'Send to slice 0'],
[' '
'-> XN Subquery Scan '
'usage_info '
'(cost=333704879.26..333704882.26 '
'rows=200 width=56)'],
[' '
'-> XN HashAggregate '
'(cost=333704879.26..333704880.26 '
'rows=200 width=56)'],
[' '
'-> XN Nested Loop '
'Left Join '
'DS_BCAST_INNER '
'(cost=45600038.36..333697688.86 '
'rows=410880 '
'width=56)'],
[' '
'Join Filter: '
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'(("inner".eventtime < '
'"outer".end_time) AND '
'("inner".eventtime >= '
'"outer".start_time))'],
[' '
'-> XN Nested Loop '
'Left Join '
'DS_BCAST_INNER '
'(cost=45600038.36..295205240.86 '
'rows=23112 width=48)'],
[' '
'Join Filter: '
'(("outer".start_time '
'<= "inner".logtime) '
'AND ("outer".end_time '
'> "inner".logtime))'],
[' '
'-> XN Subquery Scan '
'billing_and_reports_log '
'(cost=45600038.36..45600040.86 '
'rows=200 width=40)'],
[' '
'-> XN HashAggregate '
'(cost=45600038.36..45600038.86 '
'rows=200 width=52)'],
[' '
'-> XN Hash Full Join '
'DS_DIST_BOTH '
'(cost=21.35..45600034.86 '
'rows=200 width=52)'],
[' '
'Outer Dist Key: '
'bl.end_time'],
[' '
'Inner Dist Key: '
'stll_arcadia_billing_ris_reports.interval_endtime'],
[' '
'Hash Cond: '
'(("outer".end_time = '
'"inner".interval_endtime) '
'AND '
'("outer".start_time = '
'"inner".interval_starttime))'],
[' '
'-> XN Subquery Scan '
'bl '
'(cost=20.75..29.25 '
'rows=200 width=32)'],
[' '
'-> XN HashAggregate '
'(cost=20.75..27.25 '
'rows=200 width=28)'],
[' '
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'-> XN Seq Scan on '
'stll_arcadia_billing_log '
'(cost=0.00..8.30 '
'rows=830 width=28)'],
[' '
'-> XN Hash '
'(cost=0.40..0.40 '
'rows=40 width=20)'],
[' '
'-> XN Seq Scan on '
'stll_arcadia_billing_ris_reports '
'(cost=0.00..0.40 '
'rows=40 width=20)'],
[' '
'-> XN Seq Scan on '
'stll_cluster_blocks_stats '
'(cost=0.00..10.40 '
'rows=1040 width=16)'],
[' '
'-> XN Seq Scan on '
'stll_xregion_metering '
'(cost=0.00..1.60 '
'rows=160 width=16)'],
['----- Nested Loop '
'Join in the query '
'plan - review the '
'join predicates to '
'avoid Cartesian '
'products -----']],

'pg_catalog.sys_spectrum_scan_error': [['XN Hash Left Join '
'DS_BCAST_INNER '
'(cost=0.55..4000000.60 '
'rows=1 '
'width=14022)'],
[' Hash Cond: '
'("outer".query = '
'"inner".child_query_id)'],
[' -> XN Seq Scan '
'on '
'stll_spectrum_scan_error '
'(cost=0.00..0.00 '
'rows=1 '
'width=14018)'],
[' -> XN Hash '
'(cost=0.50..0.50 '
'rows=20 width=12)'],
[' -> XN '
'Subquery Scan d '
'(cost=0.00..0.50 '
'rows=20 width=12)'],
[' -> '
'XN Unique '
'(cost=0.00..0.30 '
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'rows=20 width=12)'],
[' '
'-> XN Seq Scan on '
'stll_query_detail '
'(cost=0.00..0.20 '
'rows=20 '
'width=12)']],

'pg_catalog.sys_stream_scan_errors': [['XN Subquery Scan '
'sys_stream_scan_errors '
'(cost=0.00..0.70 '
'rows=20 width=260)'],

[' -> XN Append '
'(cost=0.00..0.50 '
'rows=20 '
'width=2371)'],

[' -> XN '
'Subquery Scan '
'"*SELECT* 1" '
'(cost=0.00..0.20 '
'rows=10 '
'width=2371)'],

[' -> '
'XN Seq Scan on '
'stll_kinesis_scan_errors '
'(cost=0.00..0.10 '
'rows=10 '
'width=2371)'],

[' -> XN '
'Subquery Scan '
'"*SELECT* 2" '
'(cost=0.00..0.30 '
'rows=10 '
'width=1992)'],

[' -> '
'XN Seq Scan on '
'stll_kafka_scan_errors '
'(cost=0.00..0.20 '
'rows=10 '
'width=1992)']],

'pg_catalog.sys_stream_scan_states': [['XN Subquery Scan '
'sys_stream_scan_states '
'(cost=0.00..2.50 '
'rows=70 width=224)'],

[' -> XN Append '
'(cost=0.00..1.80 '
'rows=70 '
'width=2004)'],

[' -> XN '
'Subquery Scan '
'"*SELECT* 1" '
'(cost=0.00..0.60 '
'rows=30 '
'width=2004)'],
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[' -> '
'XN Seq Scan on '
'stll_kinesis_scan_states '
'(cost=0.00..0.30 '
'rows=30 '
'width=2004)'],

[' -> XN '
'Subquery Scan '
'"*SELECT* 2" '
'(cost=0.00..1.20 '
'rows=40 '
'width=1625)'],

[' -> '
'XN Seq Scan on '
'stll_kafka_scan_states '
'(cost=0.00..0.80 '
'rows=40 '
'width=1625)']],

'pg_catalog.sys_unload_detail': [['XN Hash Join '
'DS_BCAST_INNER '
'(cost=24.15..80000032.46 '
'rows=7 width=3934)'],
[' Hash Cond: '
'((("outer".query)::bigint '
'= '
'"inner".rewritten_query_id) '
'AND ("outer".userid = '
'"inner".user_id))'],
[' -> XN Seq Scan on '
'stll_unload_log '
'(cost=0.00..0.20 rows=20 '
'width=3918)'],
[' -> XN Hash '
'(cost=23.15..23.15 '
'rows=200 width=32)'],
[' -> XN Subquery '
'Scan l '
'(cost=0.00..23.15 '
'rows=200 width=32)'],
[' -> XN '
'Unique '
'(cost=0.00..21.15 '
'rows=200 width=32)'],
[' -> '
'XN Seq Scan on '
'stll_user_query_map '
'(cost=0.00..9.40 '
'rows=940 width=32)']],

'pg_catalog.sys_unload_history': [['XN Subquery Scan '
'sys_unload_history '
'(cost=160001.46..160002.65 '
'rows=14 width=264)'],
[' -> XN HashAggregate '
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'(cost=160001.46..160002.51 '
'rows=14 width=1716)'],
[' -> XN Hash '
'Left Join '
'DS_BCAST_INNER '
'(cost=0.00..160000.69 '
'rows=14 width=1716)'],
[' Hash '
'Cond: ("outer".query_id '
'= "inner".query_id)'],
[' -> XN '
'Seq Scan on '
'stll_unload_history_base '
'suhb (cost=0.00..0.50 '
'rows=14 width=1708)'],
[' '
'Filter: (user_id > 1)'],
[' -> XN '
'Hash (cost=0.00..0.00 '
'rows=1 width=8)'],
[' -> '
'XN Seq Scan on '
'stv_user_query_state '
'suqs (cost=0.00..0.00 '
'rows=1 width=8)']]},

'svv_access': {'svv_all_columns': True,
'svv_all_schemas': True,
'svv_all_tables': True,
'svv_alter_table_recommendations': True,
'svv_attached_masking_policy': True,
'svv_column_privileges': True,
'svv_columns': True,
'svv_database_privileges': True,
'svv_datashare_consumers': True,
'svv_datashare_objects': True,
'svv_datashare_privileges': True,
'svv_datashares': True,
'svv_default_privileges': True,
'svv_diskusage': False,
'svv_external_columns': True,
'svv_external_databases': True,
'svv_external_partitions': True,
'svv_external_schemas': True,
'svv_external_tables': True,
'svv_function_privileges': True,
'svv_geography_columns': False,
'svv_geometry_columns': False,
'svv_iam_privileges': False,
'svv_identity_providers': True,
'svv_integration': True,
'svv_interleaved_columns': True,
'svv_language_privileges': True,
'svv_masking_policy': True,
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'svv_ml_model_info': True,
'svv_ml_model_privileges': True,
'svv_mv_dependency': True,
'svv_mv_info': True,
'svv_query_inflight': False,
'svv_query_state': False,
'svv_redshift_columns': True,
'svv_redshift_databases': True,
'svv_redshift_functions': True,
'svv_redshift_schemas': True,
'svv_redshift_tables': True,
'svv_relation_privileges': True,
'svv_restore_table_state': False,
'svv_rls_applied_policy': False,
'svv_rls_attached_policy': True,
'svv_rls_policy': True,
'svv_rls_relation': True,
'svv_role_grants': True,
'svv_roles': True,
'svv_schema_privileges': True,
'svv_schema_quota_state': False,
'svv_sem_usage': False,
'svv_sem_usage_leader': False,
'svv_system_privileges': True,
'svv_table_info': True,
'svv_tables': True,
'svv_transactions': True,
'svv_user_grants': True,
'svv_user_info': True,
'svv_vacuum_progress': False,
'svv_vacuum_summary': False},

'total_duration': 600.8878445625305}

Provisioned Tests
{'us-east-1': {'ra3.xlplus': {2: {'slices_num': [[0], [1], [2], [3]],

'stv_slices': [[0, 0, 0, 'data'],
[0, 1, 1, 'data'],
[0, 6, 2, 'data'],
[0, 7, 3, 'data'],
[1, 2, 0, 'data'],
[1, 3, 1, 'data'],
[1, 4, 2, 'data'],
[1, 5, 3, 'data']]},

4: {'blocks': [[80]],
'slices_num': [[0],

[1],
[2],
[3],
[4],
[5],
[6],
[7]],
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'stv_slices': [[0, 0, 0, 'data'],
[0, 1, 1, 'data'],
[1, 2, 0, 'data'],
[1, 3, 1, 'data'],
[2, 4, 0, 'data'],
[2, 5, 1, 'data'],
[3, 6, 0, 'data'],
[3, 7, 1, 'data']]}}}}

{'us-east-1': {'ra3.xlplus': {2: {'blocks': [[40]],
'slices_num': [[0], [1], [2], [3]],
'stv_slices': [[0, 0, 0, 'data'],

[0, 1, 1, 'data'],
[1, 2, 0, 'data'],
[1, 3, 1, 'data']]},

4: {'slices_num': [[1], [3], [4], [5]],
'stv_slices': [[0, 0, 0, 'data'],

[0, 4, 1, 'compute'],
[1, 2, 0, 'data'],
[1, 5, 1, 'compute'],
[2, 1, 0, 'data'],
[2, 6, 1, 'compute'],
[3, 3, 0, 'data'],
[3, 7, 1, 'compute']]}}}}
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Appendix B : AutoWLM Investigation
As part of this investigation, I wanted to develop a way to induce the use of a CSC cluster while
AutoWLM is in use.

I was unable to do so, but the work which was done lead to some interesting first findings about
AutoWLM. I have performed no investigation into AutoWLM, I never use it, and I advise clients
never to use it, so it’s been a closed book until now.

Now, with manual WLM, I know how to invoke a CSC cluster; configure one queue with CSC
enabled and one slot only, issue a long running query (I use a self-join insert) and then issue a
second query (in this case, a select).

The select will invoke a CSC cluster, always, and it should do, according to the described be-
haviour of CSC - a CSC cluster will be used when a queue which has CSC enabled is full.

So far so good, but what about AutoWLM?

With AutoWLM, you control how many queues there are, but that’s it; you no longer control
the number of slots or the amount of memory assigned to the queue (and SQA is always enabled,
which is another mechanism I advise clients not to use).

You also cannot see this information, because it is no longer published in the system tables.
With manual WLM, you can see how much memory and how many slots each queue has. With
AutoWLM, this information is no longer provided and is NULL.

Note however Redshift has and even with AutoWLM I expect still has a total, system-wide limit
of 50 slots.

If CSC clusters are still invoked in the same way - a queue is full - then it’s going to be necessary
I would think to bombard Redshift with enough queries that a queue becomes full, where all
slots, however many there are, being in use concurrently, forcing a CSC cluster to be used.

Where Redshift Serverless charges by query-second and has its minimum 60 second charge, this
would be an expensive test to develop :-)

As such, I began on a normal two node dc2.large cluster, which I rent for half a dollar per hour
:-)

If I could reliably induce a CSC cluster, with AutoWLM is use, then I could use that method on
a Serverless workgroup, and see what happens.

I created a cluster, and configured it to have one queue only (the default queue), with CSC active,
and with AutoWLM enabled.

I wrote a test script, in Python, where the test script runs, and every one second, spawns a new
thread, that thread connects to the cluster, creates a new table, inserts four initial rows, and
then begins to issue back-to-back pairs of an insert using a self-join and a select count(*).

So here we see each thread is fully independent; its own connection, its own table, no dependencies
or involvement with anything else.

During the development process, I made one or two discoveries, which allowed a little insight in
the queue and slot configuration currently chosen by AutoWLM.

Firstly, it is still possible to see how many slots are being used by a query - you can’t see
information about queues, but you can still see information about queries.

105



This information, the slots used by a query, is found in stv_wlm_query_state, which shows
currently running queries, and also in stl_wlm_query, which shows the history of all completed
queries.

The latter tables allows me to write a query which tracks over time the total number of slots in
use - which gives us some insight into what AutoWLM is doing.

Secondly, it turns out the SET variable wlm_query_slot_count still seems to be functional.

By default, a query uses a single slot. However, if I set wlm_query_slot_count to a higher value,
I see that value being shown in the slot_count column of stv_wlm_query_state.

The obvious thought then is to set wlm_query_slot_count to a high value, like 55 (more than
the maximum possible number of slots) and issue a query.

Note the docs state you cannot set this value to higher than 50. This is not true. What actually
happens, at least with AutoWLM (I’ve not tried it with manual WLM), is if you specify a slot
count greater than the available number of slots is that Redshift silently reduces the number of
slots allocated to the number of slots currently available in the queue the query is sent to, and
you can perfectly well set the value to any number you like.

As such, when I set wlm_query_slot_count to 55, and issued a query, I could see it was being
assigned 3 (three) slots.

My conclusion was that AutoWLM had at that time configured a single queue with three slots.

My expectation then was that issuing a select at this point would induce the use of a CSC cluster.

This, however, did not occur.

The select was serviced, while the three-slot query was ongoing, without a CSC cluster.

This left me quite bemused.

I then ran the test script described earlier - one new thread per second, each which makes a new
table, inserts four initial rows, and then starts issuing back-to-back pairs of insert self-joins and
select count(*)s.

To my considerable surprise, despite this script running, a select still did not invoke a CSC
cluster.

Examining stv_wlm_query_state, I would see this (the final column is just off the page - sorry
- limitations of the document tooling);
dev=# select * from stv_wlm_query_state;
xid | task | query | service_class | slot_count | wlm_start_time | state | queue_time | exec_time | query_priority

-------+--------+--------+---------------+------------+----------------------------+------------------+------------+-----------+----------------------
16122 | 600287 | 601150 | 100 | 3 | 2023-05-29 12:31:20.639253 | QueuedWaiting | 68859749 | 0 | High
16145 | 600291 | 601180 | 100 | 3 | 2023-05-29 12:31:25.34471 | QueuedWaiting | 64154303 | 0 | High
16169 | 600295 | 601210 | 100 | 3 | 2023-05-29 12:31:31.297203 | QueuedWaiting | 58201735 | 0 | High
16195 | 600299 | 601240 | 100 | 3 | 2023-05-29 12:31:36.164369 | QueuedWaiting | 53334654 | 0 | High
16224 | 600303 | 601270 | 100 | 3 | 2023-05-29 12:31:39.692616 | QueuedWaiting | 49806400 | 0 | High
16253 | 600307 | 601300 | 100 | 3 | 2023-05-29 12:31:44.737511 | QueuedWaiting | 44761503 | 0 | High
16280 | 600312 | 601331 | 100 | 3 | 2023-05-29 12:31:49.807809 | QueuedWaiting | 39691087 | 0 | High
16300 | 600316 | 601340 | 100 | 1 | 2023-05-29 12:32:29.496731 | Running | 0 | 1990 | Normal
16112 | 600285 | 601137 | 100 | 3 | 2023-05-29 12:31:18.329078 | Running | 0 | 71169857 | Normal
(9 rows)

The first thread has its insert self-join running, and all the other threads have their queries
queued.
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Quite simply, CSC was not occurring, and indeed, even basic parallelism was not occurring - to
my eye, even without CSC, many of those queued queries could and should have been running
in parallel - remember, they’re all writing to different tables.

(Note the query_priority stuff has nothing to do with me - I did not set it - AutoWLM is doing
that by itself, and the single query with a slot count of 1 is the query which examined the system
tables to produce the data you see in the table above.)

On the face of it, with this toe-in-the-water test, AutoWLM seems to be leaving a lot of concur-
rency, and so performance, on the table.

Now, in this situation, where the test script is running, one thread is having its queries serviced
and the others are all blocked, but if I manually issue a select, it is serviced, and no CSC cluster
arises.

So the question is how the hell is that select being serviced? why doesn’t it queue?

It turns out what’s happening is that AutoWLM sneaky like adds an extra slot to the queue,
runs the query in that slot, and then removes that slot once the select has completed!

I can see this by looking at stl_wlm_query, and running a query which shows me the total
number of slots in use over time.

I get this, where tsc is the total slot count in use. Time is ordered descending.

event_ts | tsc
----------------------------+-----
2023-05-29 13:19:08.366717 | 1
2023-05-29 13:19:09.095557 | 0
2023-05-29 13:19:09.133869 | 1
2023-05-29 13:19:09.360735 | 0
2023-05-29 13:19:09.798422 | 1
2023-05-29 13:19:09.958103 | 0
2023-05-29 13:19:48.315023 | 1
2023-05-29 13:19:48.471904 | 0
2023-05-29 13:19:55.791994 | 1
2023-05-29 13:19:55.854427 | 0
2023-05-29 13:19:58.091691 | 1
2023-05-29 13:19:58.102345 | 0
2023-05-29 13:19:58.370454 | 3
2023-05-29 13:19:58.500976 | 0
2023-05-29 13:19:58.754763 | 3
2023-05-29 13:19:58.772187 | 0
2023-05-29 13:19:59.043939 | 3
2023-05-29 13:19:59.782303 | 4
2023-05-29 13:19:59.851293 | 3
2023-05-29 13:19:59.972588 | 4
2023-05-29 13:20:00.585337 | 3
2023-05-29 13:20:01.128958 | 0
2023-05-29 13:20:02.76454 | 1
2023-05-29 13:20:02.793358 | 0

The initial pattern of 1 and 0 are the polling of the query which produces this output.
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I then kick off the test script, and we then see the pattern of 3 and 0, where wlm_query_slot_count
is set to 55.

With the test script running, the first thread is having its queries serviced (each of which uses
three slots) and all other threads have their query queued.

We then, critically, observe four slots in use.

That happens when the polling which produces this output runs while one of the three-slot test
script queries is running. AutoWLM has snuck in an extra slot, and then removed it when the
query completes.

So, all in all, I could not find a way to induce CSC with AutoWLM, so I could not prove CSC
is in use with Serverless.
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Appendix C : svl_query_concurrency_scaling_status
First, the columns for the system tables view svl_query_concurrency_scaling_status, from;

https://www.redshiftresearchproject.org/system_table_tracker/1.0.55524/pg_catalog.svl_qu
ery_concurrency_scaling_status.html;

column data type
concurrency_scaling_status int4
concurrency_scaling_status_txt text
endtime timestamp
pid int4
query int4
source_query int4
starttime timestamp
userid int4
xid int8

SELECT sq.userid,
sq.query,
sq.xid,
sq.pid,
sr.source_query,
sq.concurrency_scaling_status,
CASE
WHEN (sq.userid = 1)

THEN CAST('Concurrency Scaling ineligible query - Bootstrap user query' AS text)
WHEN (sq.concurrency_scaling_status = 1)

THEN CAST('Ran on a Concurrency Scaling cluster' AS text)
WHEN ( (sq.concurrency_scaling_status = 0)

AND (sr.source_query IS NOT NULL))
THEN CAST('Ran on the main cluster - Cache hit' AS text)

WHEN ( (sq.concurrency_scaling_status = 0)
AND (sw.service_class = 14))

THEN CAST('Ran on the main cluster - SQA' AS text)
WHEN ( (sq.concurrency_scaling_status = 32)

AND (sw.service_class = 14))
THEN CAST('Ran on the main cluster - Concurrency scaling is not enabled in SQA' AS text)

WHEN ( (sq.concurrency_scaling_status = 0)
AND sq.query IN (SELECT stl_burst_prepare.query

FROM stl_burst_prepare)
AND (NOT sq.query IN (SELECT stl_burst_prepare.query

FROM stl_burst_prepare
WHERE (stl_burst_prepare.code = 0))))

THEN CAST('Concurrency Scaling elegible query - Failed to prepare cluster ' AS text)
WHEN ( (sq.concurrency_scaling_status = 0)

AND sq.query IN (SELECT stl_burst_async_mark.query
FROM stl_burst_async_mark
WHERE (stl_burst_async_mark.event ~~ CAST(('%Mark%') AS text)))

AND sq.query IN (SELECT stl_burst_async_mark.query
FROM stl_burst_async_mark
WHERE (stl_burst_async_mark.event ~~ CAST(('%Unmark%') AS text))))

THEN CAST('Concurrency Scaling elegible query - Cluster was not prepared in time ' AS text)
WHEN (sq.concurrency_scaling_status = 0)

THEN CAST('Ran on the main cluster' AS text)
WHEN (sq.concurrency_scaling_status = 2)

THEN CAST('Concurrency Scaling not enabled' AS text)
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WHEN (sq.concurrency_scaling_status = 4)
THEN CAST('Concurrency Scaling ineligible query - System temporary table accessed' AS text)

WHEN (sq.concurrency_scaling_status = 5)
THEN CAST('Concurrency Scaling ineligible query - User temporary table accessed' AS text)

WHEN (sq.concurrency_scaling_status = 6)
THEN CAST('Concurrency Scaling ineligible query - System table accessed' AS text)

WHEN (sq.concurrency_scaling_status = 3)
THEN CAST('Concurrency Scaling ineligible query - Query is an Unsupported DML' AS text)

WHEN (sq.concurrency_scaling_status = 7)
THEN CAST('Concurrency Scaling ineligible query - No backup table accessed' AS text)

WHEN (sq.concurrency_scaling_status = 8)
THEN CAST('Concurrency Scaling ineligible query - Zindex table accessed' AS text)

WHEN (sq.concurrency_scaling_status = 9)
THEN CAST('Concurrency Scaling ineligible query - Query uses UDF' AS text)

WHEN (sq.concurrency_scaling_status = 10)
THEN CAST('Concurrency Scaling ineligible query - Catalog tables accessed' AS text)

WHEN (sq.concurrency_scaling_status = 11)
THEN CAST('Concurrency Scaling ineligible query - Dirty table accessed' AS text)

WHEN (sq.concurrency_scaling_status = 12)
THEN CAST('Concurrency Scaling ineligible query - Direct dispatched query' AS text)

WHEN (sq.concurrency_scaling_status = 16)
THEN CAST('Concurrency Scaling ineligible query - No tables accessed' AS text)

WHEN (sq.concurrency_scaling_status = 17)
THEN CAST('Concurrency Scaling ineligible query - Spectrum queries are disabled' AS text)

WHEN (sq.concurrency_scaling_status = 18)
THEN CAST('Concurrency Scaling ineligible query - Function not supported ' AS text)

WHEN (sq.concurrency_scaling_status = 19)
THEN CAST('Concurrency Scaling ineligible query - Instance type not supported ' AS text)

WHEN (sq.concurrency_scaling_status = 20)
THEN CAST('Concurrency Scaling ineligible query - Burst temporarily disabled ' AS text)

WHEN (sq.concurrency_scaling_status = 21)
THEN CAST('Concurrency Scaling ineligible query - Unload queries are disabled ' AS text)

WHEN (sq.concurrency_scaling_status = 22)
THEN CAST('Concurrency Scaling ineligible query - Unsupported unload type ' AS text)

WHEN (sq.concurrency_scaling_status = 23)
THEN CAST('Concurrency Scaling ineligible query - Non VPC clusters cannot burst ' AS text)

WHEN (sq.concurrency_scaling_status = 24)
THEN CAST('Concurrency Scaling ineligible query - VPCE not setup ' AS text)

WHEN (sq.concurrency_scaling_status = 25)
THEN CAST('Concurrency Scaling failed query - Inelegible to rerun on main cluster due to failure handling not enabled' AS text)

WHEN (sq.concurrency_scaling_status = 26)
THEN CAST('Concurrency Scaling failed query - Inelegible to rerun on main cluster due to concurrency scaling not auto' AS text)

WHEN (sq.concurrency_scaling_status = 27)
THEN CAST('Concurrency Scaling failed query - Inelegible to rerun on main cluster due to results already returning ' AS text)

WHEN (sq.concurrency_scaling_status = 28)
THEN CAST('Concurrency Scaling failed query - Inelegible to rerun on main cluster due to non retriable error ' AS text)

WHEN (sq.concurrency_scaling_status = 29)
THEN CAST('Concurrency Scaling failed query - Elegible to rerun on main cluster ' AS text)

WHEN (sq.concurrency_scaling_status = 30)
THEN CAST('Concurrency Scaling inelegible query - Cumulative time not met ' AS text)

WHEN (sq.concurrency_scaling_status = 31)
THEN CAST('Concurrency Scaling inelegible query - Paused query ' AS text)

WHEN (sq.concurrency_scaling_status = 32)
THEN CAST('Query assigned to non Concurrency Scaling queue ' AS text)

WHEN (sq.concurrency_scaling_status = 33)
THEN CAST('Concurrency Scaling ineligible query - Query has state on Main cluster ' AS text)

WHEN (sq.concurrency_scaling_status = 34)
THEN CAST('Concurrency Scaling ineligible query - Query is inelegible for bursting Volt CTAS ' AS text)

WHEN (sq.concurrency_scaling_status = 35)
THEN CAST('Concurrency Scaling ineligible query - Resource blacklisted ' AS text)

WHEN (sq.concurrency_scaling_status = 36)
THEN CAST('Concurrency Scaling ineligible query - Non-retryable VoltTT queries are blacklisted ' AS text)
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WHEN (sq.concurrency_scaling_status = 37)
THEN CAST('Concurrency Scaling ineligible query - Query is retrying on Main cluster ' AS text)

WHEN (sq.concurrency_scaling_status = 38)
THEN CAST('Concurrency Scaling ineligible query - Cannot burst Volt-created CTAS using cursors ' AS text)

WHEN (sq.concurrency_scaling_status = 39)
THEN CAST('Concurrency Scaling usage limit reached ' AS text)

WHEN (sq.concurrency_scaling_status = 40)
THEN CAST('Concurrency Scaling ineligible query - Unsupported VoltTT Utility query ' AS text)

WHEN (sq.concurrency_scaling_status = 41)
THEN CAST('Concurrency Scaling ineligible query - Write query generating Volt TTs ' AS text)

WHEN (sq.concurrency_scaling_status = 42)
THEN CAST('Concurrency Scaling ineligible query - VoltTT query with invalid state ' AS text)

WHEN (sq.concurrency_scaling_status = 43)
THEN CAST('Concurrency Scaling ineligible query - Explain query generating Volt TTs ' AS text)

WHEN (sq.concurrency_scaling_status = 44)
THEN CAST('Concurrency Scaling ineligible query - Bursting Volt-generated queries is disabled ' AS text)

WHEN (sq.concurrency_scaling_status = 45)
THEN CAST('Concurrency Scaling ineligible query - Resource of VoltTT UNLOAD is blacklisted ' AS text)

WHEN (sq.concurrency_scaling_status = 46)
THEN CAST('Concurrency Scaling ineligible query - Multiple pre-Volt query trees ' AS text)

WHEN (sq.concurrency_scaling_status = 48)
THEN CAST('Concurrency Scaling ineligible query - Target table is DistAll/DistAutoAll ' AS text)

WHEN (sq.concurrency_scaling_status = 49)
THEN CAST('Concurrency Scaling ineligible query - Table that has diststyle changed in current txn accessed ' AS text)

WHEN (sq.concurrency_scaling_status = 50)
THEN CAST('Concurrency Scaling ineligible query - Cannot burst spectrum copy ' AS text)

WHEN (sq.concurrency_scaling_status = 51)
THEN CAST('Concurrency Scaling ineligible query - Dirty transaction tables accessed ' AS text)

WHEN (sq.concurrency_scaling_status = 52)
THEN CAST('Concurrency Scaling ineligible query - Table that has identity column as a target table ' AS text)

WHEN (sq.concurrency_scaling_status = 53)
THEN CAST('Concurrency Scaling ineligible query - Datasharing remote tables accessed' AS text)

WHEN (sq.concurrency_scaling_status = 54)
THEN CAST('Concurrency Scaling ineligible query - Target table with comp update' AS text)

WHEN (sq.concurrency_scaling_status = 55)
THEN CAST('Concurrency Scaling ineligible query - Nested tables accessed' AS text)

WHEN (sq.concurrency_scaling_status = 56)
THEN CAST('Concurrency Scaling ineligible query - Copy from EMR ' AS text)

WHEN (sq.concurrency_scaling_status = 59)
THEN CAST('Concurrency Scaling ineligible query - Table that has column encode changed in current txn accessed ' AS text)

WHEN (sq.concurrency_scaling_status = 60)
THEN CAST('Concurrency Scaling ineligible query - MV refresh disabled ' AS text)

WHEN (sq.concurrency_scaling_status = 61)
THEN CAST('Concurrency Scaling ineligible query - Too many concurrent writes ' AS text)

WHEN (sq.concurrency_scaling_status = 62)
THEN CAST('Concurrency Scaling ineligible query - Main cluster too big for writes ' AS text)

WHEN (sq.concurrency_scaling_status = 63)
THEN CAST('Concurrency Scaling ineligible query - Datasharing VoltTT ' AS text)

WHEN (sq.concurrency_scaling_status = 64)
THEN CAST('Concurrency Scaling ineligible query - Target table has super/geo column ' AS text)

WHEN (sq.concurrency_scaling_status = 65)
THEN CAST('Concurrency Scaling rejected query - Ineligible to queue on burst cluster, eligible to rerun on any cluster ' AS text)

WHEN (sq.concurrency_scaling_status = 66)
THEN CAST('Concurrency Scaling ineligible query - Datasharing with burst-write' AS text)

WHEN (sq.concurrency_scaling_status = 67)
THEN CAST('Concurrency Scaling ineligible query - CTAS with burst-write' AS text)

WHEN (sq.concurrency_scaling_status = 68)
THEN CAST('Concurrency Scaling ineligible query - COPY on tables with identity columns' AS text)

WHEN (sq.concurrency_scaling_status = 70)
THEN CAST('Concurrency Scaling ineligible query - Datasharing query with cursor' AS text)

WHEN (sq.concurrency_scaling_status = 71)
THEN CAST('Ran on a Multi-AZ secondary cluster' AS text)
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WHEN (sq.concurrency_scaling_status = 72)
THEN CAST('Concurrency Scaling ineligible query - Burst MERGE is disabled' AS text)

WHEN (sq.concurrency_scaling_status = 73)
THEN CAST('Concurrency Scaling ineligible query - Redshift Table via Lake Formation accessed' AS text)

WHEN (sq.concurrency_scaling_status = 74)
THEN CAST('Concurrency Scaling ineligible query - COPY on table with default value column' AS text)

ELSE CAST('Concurrency Scaling ineligible query - Unknown status' AS text)
END AS concurrency_scaling_status_txt,
sq.starttime,
sq.endtime

FROM stl_query AS sq
LEFT JOIN stl_result_cache_history AS sr ON sq.query = sr.cache_hit_query
LEFT JOIN stl_wlm_query AS sw ON (sq.query = sw.query)

AND (sq.userid = sw.userid)
AND (sq.xid = sw.xid)
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Appendix D : Notes on the Test Script
Unusually, this script does not configure the Redshift environment and AWS networking envi-
ronment before running - I am using my own existing RS and network configuration.

Usually my scripts create and then remove all necessary configuration, which is non-trivial - it
took a full, solid, non-stop week of agonizing experimentation to figure that out - but where
Serverless is new and also the networking setup is more complex, firstly, and primarily, I simply
cannot face the emotional agony involved in working with AWS networking configuration via
boto, and secondly, where boto is not reliable, and the networking configuration is complex, I
begin to have a concern about using it to make significant changes to other peoples configurations.

I really, really, really want this script to automatically perform all configuration (and that’s
complex - AWS have made a complete mess of this, and so you have to deal with multiple
possible scenarios), but it was a month of hell - pure and ever increasing agony - trying to get
this script working in the first place. It was like trying to rent in Amsterdam. I’m not a robot,
I’m human, and I have limits, and I’ve reached my uttermost limit for working with boto and
Serverless.

So, if you want to run this script, you can see the command line arguments, you know what
the script needs, and either you know how to configure AWS networking correctly such that you
have or can create the necessary setup, or you do not.

I will walk anyone and everyone who does want to run this script through what has to be done.
That’s fine - it’ll be done via the console, not boto.

I actually have a largely complete PDF which covers AWS networking setup for RS, via console
and also via boto, which I need to review and get out the door.
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