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Abstract

AQUA is a solution to the problem that min-max culling (aka the
Zone Map) is wholly ineffective when searching for strings with wildcard
patterns, forcing full column scans, and as such all scan steps and only
all scan steps which use the LIKE and/or SIMILAR TO operators are
routed to AQUA, as these are the two operators offering search in strings
with wildcards. AQUA is implemented as a multi-node distributed set
of independent data processors, separate from RMS and from Redshift,
and as such the basic design is the same as Redshift Spectrum, with
each processor scanning a portion of the data in a table and returning
results to the Redshift cluster, and appears to implement most if not
all of the SQL functionality possible with this design, which is to say,
that functionality which can be performed by examining a single row at
a time in a single table, and by maintaining aggregate information from
those rows; so there exists functionality which AQUA cannot implement,
such as distinct. When AQUA is presented with a scan step with work
AQUA cannot perform, necessarily some, most or all of the rows in the
table must be returned to the Redshift cluster, such that that work can
there be performed. As such, queries must be written correctly for AQUA,
just as with Spectrum. AWS do not provide the information to do this,
and so guesswork and experimentation must be used. When a scan step
is routed to AQUA, AQUA downloads to itself, not to the Redshift cluster
local SSD cache, the table being scanned from RMS. With the 12,988 block
test table, on an idle two node ra3.xlplus cluster, this took 41 seconds.
After this, AQUA performs more quickly than the cluster, with the time
taken with test queries used for the part of the work routed to AQUA
going from about 9.4 seconds to about 1.7 seconds. It is necessary then
to issue a number of LIKE or SIMILAR TO queries on a table to reclaim
the large initial cost of the first query, otherwise AQUA will actually
reduce performance. There are no findings about how long must pass
before a table needs to be re-read by AQUA. In the course of investigating
AQUA, it was discovered that RMS is a block-based store, not a table-
based store; Redshift brings into local SSD cache only those blocks which
are needed to service queries. With an ra3.xlplus node, bandwidth to
RMS is about 160mb/second, and bandwidth to the local SSD cache is
about 720mb/second.
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Introduction
The Hype Lives!
I feel I need to begin with the marketing for AQUA, because it took on a life of
its own.

AWS issued a press release announcing general availability in April 2021;

AQUA provides a new distributed and hardware accelerated cache
that brings compute to the storage layer for Amazon Redshift and
delivers up to 10x faster query performance than other enterprise
cloud data warehouses.

2

https://aws.amazon.com/about-aws/whats-new/2021/04/aws-announces-general-availability-of-aqua-for-amazon-redshift/


Grammatically not the clearest, but seems to say using AQUA gives you up to
10x performance over other data warehouses (leaving open the question of what
you get without AQUA =-)

However, a longer AWS tech blog post on the same day states (my italics);

AQUA pushes the computation needed to handle reduction and ag-
gregation queries closer to the data. This reduces network traffic,
offloads work from the CPUs in the RA3 nodes, and allows AQUA
to improve the performance of those queries by up to 10x, at no
extra cost and without any code changes.

Ah. So it’s 10x only for “reduction and aggregation” queries, whatever they are,
and that’s 10x over whatever Redshift has without AQUA, rather 10x faster than
everyone else (and when AWS say “for free”, bear in mind because everything
costs money - FPGA designers do not work for nothing, nor do chip foundries -
and for AWS all money in the end comes from end-users).

Now, it you look closely and read right to the end of that long tech blog post,
with its many screengrabs and SQL and performance measures and so on, all
showing how amazing AQUA is, at the very end in a single bullet point buried
in a list of bullet points, there’s this;

AQUA is designed to deliver up to 10X performance on queries that
perform large scans, aggregates, and filtering with LIKE and SIMI-
LAR_TO predicates. Over time we expect to add support for addi-
tional queries.

Yup. Forget the blurb about large scans and so on, it’s malformed grammar -
AQUA is used when and only when there is a LIKE or a SIMILAR TO and
that’s it.

(As an aside, I looked around, and could find no indication of any additional
functionality in the years since this blog post was made.)

Meanwhile, over at TechCrunch, Forbes, Blocks & Files, and plenty of others,
we find…

AWS speeds up Redshift queries 10x with AQUA

How AQUA For Amazon Redshift Performs Its Queries Up To 10X
Faster Than Before

Amazon Web Services is bringing compute closer to its Redshift
cloud data warehouse storage to accelerate query processing by 10x.

The only 10x I can see here is the gap between marketing, the press, and reality.

Now, on the face of it, this is all profoundly underwhelming but I’m of the view
- as will become clear - that AQUA is actually rather smart and addresses a
particular narrorw but significant scalability issue. I also think if AWS didn’t
spend all their time emitting hyperbole, and instead went for truth and facts,
they would be in a position to explain what is important about this, whereas
instead we have enough hot air to power an ecologically friendly mass-transit
system.
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AQUA Becomes Mandatory
On or about the 10th September AWS emailed end-users running RA3 clusters
and who had used AQUA in the past (there was no public announcement) with
the following message;

We want to inform you that Amazon Redshift will now automati-
cally determine when to apply performance acceleration techniques
that leverage AQUA technology. Thus, the ability to enable and
disable AQUA will be removed from the console starting the week
of September 12, 2022.

That grandiose first statement made me think AQUA was being made manda-
tory.

This prompted me to drop what I was doing and spend what turned out to be
the following eleven days, all day, every day, investigating while I still could (to
investigate, you need to be able to compare with to without, which means being
able to disable AQUA).

In fact, as time passed, it became clear all AWS have done is… …remove the
option from the Redshift console.

From Python using boto3, the AQUA configuration options are unchanged, and
I would imagine this is true for everything, except the Redshift console.

Additionally, I suspect “automatically determine” in fact means “will always be
used if LIKE or SIMILAR TO are in use”, e.g. exactly as it always was. It’s just
now you can’t turn it off, if you start the cluster via the console.
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What is AQUA?
Prior to such results as will come from this investigation, all there is to go on are
the hints wrapped in marketing that AWS publish in the guise of documentation
and in that material this sentence, for whatever it’s worth, is the best I’ve found
describing the implementation.

AQUA is a cost-effective addition to Amazon Redshift–managed
storage […] (that) uses acceleration based on a field-programmable
gate array (FPGA) to push as much computation as possible into
the storage layer.

That sounds to me like FPGAs in the servers which are RMS, and they perform
work on the blocks they read from RMS.

There’s then another page, which describes, but do not actually specify, ad-
ditional functionality - that when a LIKE or SIMILAR TO is present, and
so AQUA is invoked, it will handle other WHERE clauses, and it will handle
GROUP BY (although there’s also a long list of limitations; there’s a lot of
LIKE or SIMILAR TO which will not be handled by AQUA.)

Finally, there’s a YouTube video published by AWS describing AQUA. I ques-
tioned and thought improper and misleading about 90% of the statements made,
which is pretty much my view of all material emitted by AWS.

So, that above is all the information I can find about AQUA and so all I know
to write here.

However, I have an idea of what AQUA is in fact all about, and why it was
made, and to my eye, it’s a smart move.

The issue is the Zone Map.

So there’s a method in computing called “min-max culling”. This is implemented
in Redshift as the “Zone Map”. Every block on disk has stored its minimum
and maximum value and so when you come to scan a column for a particular
value or range of values, you can immediately know which blocks that value or
those values cannot be in, because the value or values are all smaller than the
minimum, and/or larger than the maximum, for each block.

If I have a block storing integers, and the minimum value in that block is 120
and the maximum value is 450, and I want to find those rows with the value 85,
I know no such rows can be in that block.

This method, along with sorting, when and only when correctly operated, are
how sorted relational databases provide timely SQL on Big Data.

The problem with LIKE and SIMILAR TO is that they defeat the Zone Map;
it can no longer be used. You have to scan the whole column - and that’s death
on toast when you have your archetypal Big Data petabyte of data.

Consider; imagine we have a column of strings - let’s say, names for all the
people in Ukraine.

Redshift stores the first eight bytes of each string as it’s value for min-max
culling.
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If we search for ‘Victoria’, then the Zone Map allows us to ignore all blocks
which cannot possibly contain that string.

But what if we search for ‘LIKE %Victoria%’?

Well, now we have a problem.

The Zone Map cannot help us because of the wildcards; the part of the string
we might match to could be anywhere in the string, and so we can no longer
eliminate blocks using min-max culling; knowing the minimum and maximum
strings in a block does not tell you in any given string in a block contains the
substring ‘Victoria’.

This means we must now scan the whole column, and that, with Big Data, is
game over.

If LIKE (and SIMILAR TO, which has the same problem) can be made to scale,
then a fundamental limitation has been lifted, and that of course will unlock
entirely new use cases.

However, all of this is only my guess, and so I must say then that AQUA
is not a defined product. I do not know what it is, of what it is for, from
AWS documentation. It’s capabilities, performance, behaviour, strengths and
weaknesses are almost wholly unknown. As such, if you are using AQUA, unless
you have access to information I do not, you are simply taking a gamble, where
the benefits, downsides and risks are all almost unknown.

Test Method
There are two separate sets of tests.

The first set consists of general experiments - queries - to get an idea of the
nature of AQUA.

The second set consists of a methodical exploration of performance and be-
haviour with and without AQUA, using and not using LIKE, and when the
tables used are in, or not in, the local SSD cache.

The second set of tests has three variables to control;

1. is AQUA enabled or disabled
2. is LIKE or SIMILAR TO being used, or not used
3. is the table in local cache, or only in RMS

Controlling AQUA is easy; it’s part of cluster configuration.

Controlling LIKE / SIMILAR TO is easy, as we control the test query being
issued.

Controlling whether a table is in local SSD cache or RMS is not so easy. There
are no options to control the local SSD cache, so we have to operate the cluster
in such a way that we can ensure a table is no longer in cache.

The ra3.xlplus nodes have 954,367 megabytes of local store, and I always run
two node clusters (single node clusters are an aberration - do not use them,
ever), so there are 1,908,734 megabytes of disk, and it could be all of it is used
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for cache. I need to write data to this cache until it is full, and then write
additional data so that the first data written begins to be flushed from the
cache (assuming LRU).

The basic approach is to create and populates tables until the disk size plus 25%
has been written, and then use the very first tables written in the test query.
Those first tables should by then no longer be in the cache.

The tables are identical, with the following DDL;

create table table_%d
(
column_1 int2 not null encode raw distkey,
column_2 char(1024) not null encode raw

)
diststyle key;

The goal is to have two values in the table, which one each slice alternate value
row by row, with an equal number of rows on each slice. The two values are
1024 characters of ‘a’ and 1024 characters of ‘b’.

I could find no way to achieve this using self-join, which is the normal method I
use to create test data, because although you can write a query which in theory
would produce this output, SQL specifies no ordering to rows and Redshift is
free to swap the left and right sides of the self-join, which it does in fact, and
so rather than alternating rows, you end up with very long sets of contiguous
identical values.

In the end, I had to use a separate Python script to generate the data, as four
files (one per slice), and load that using COPY.

The values to use in column_1, to control which slice a row goes to, can be
empirically determined by executing a loop which begins at 0 and increments,
and writing a single row using the loop value for column_1, then checking
stv_blocklist to see which slice the row ended up on. (You cannot use the
slice_num() function for this - now days, this indicates which slice processed
the row, not which slice the row is stored on; the docs have not been updated
and are incorrect.)

These values are known for a two-node cluster and are constant, being 0, 1, 2,
and 5.

These values are used by the data_generation.py script, which iterates over
them, opening a file, writing 3,263,442 rows (1,631,721 each of ’a’s and ’b’s), and
closing the file, resulting in four 3.2 GB CSV files and so a total of 13,053,768
rows in the table. The number of rows is that which was produced by the earlier
attempt at using self-joins; the table size that earlier attempted used worked
well, so I continued to use that number of rows.

I compress these files with bzip2, which brings them down to about 8kb each.

I tried gzip, which gives about 7.5mb, and zstd, which gives about 300kb, but
both gzip and zstd fail to load with COPY, because Redshift has problems
with decompressing very highly compressed files (not enough space allocated for
output); however, and unexpectedly, bzip2 worked.
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I begin by creating a single table, named table_base, and load these files using
COPY, like so;

copy table_base ( column_1, column_2 )
from 's3://nnn/'
access_key_id 'nnn'
secret_access_key 'nnn'
bzip2
compupdate off
csv
maxerror 0
statupdate on;

I then iterate, creating a new test table each time, and using an INSERT from
SELECT to populate the new table, like so;

insert into
table_%d ( column_1, column_2 )

select
column_1,
column_2

from
table_base;

So to run the tests in cache, we start a new cluster and create one table per test
query. One table is created per test query to avoid caching effects induced by
other test queries.

To run the tests out of RMS, 184 tables are created, which takes about two
hours.

This all has to be done twice, once for a cluster with AQUA disabled, then again
for a cluster with AQUA enabled.

The test queries are;

1. select count(*) from table_0 where column_2 = 'aaa...';

This match the first value, 1024 characters of ‘a’ (I’ve not listed them all
here :-), reads every block, and returns 50% of rows.

2. select count(*) from table_1 where column_2 like '%';

This reads every block, and returns 100% of rows.

3. select count(*) from table_1 where column_2 like '%a%';

This reads every block, and returns 50% of rows.

4. select count(*) from table_1 where column_2 like '%b%';

This reads every block, and returns 50% of rows.

5. select count(*) from table_1 where column_2 like '%c%';

This reads every block, and returns 0% of rows.

6. select count(*) from table_2 where column_2 similar to
'%a%';
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This reads every block, and returns 50% of rows, but is using SIMILAR
TO.

The first query, for equality, produces exactly the same output as the third
query, which uses LIKE, and the sixth query, which uses SIMILAR TO. These
queries are directly exactly comparable, varying only by the operator used.

The first query uses the equality operator, and so does not invoke AQUA. All
the other queries, as they use LIKE and SIMILAR TO, do invoke AQUA (at
least, when AQUA is enabled on the cluster).

Where local SSD caching is directly involved in the behaviour being tested, it
is not meaningful to run the same query the usual five times, discarding the
fastest and slowest queries, as we would expect behaviour to be fundamentally
different between each run of a test query.

Instead, what’s done is that each query is run three times, so we can see how
query behaviour evolves due to caching.

After a cluster is created, boto3 is used to obtain information about the cluster,
which is dumped into the results, so we can definitively know its AQUA status.

Returning to the first set of tests, the general experiments, these load the data
from S3 using COPY, as described above, and then create a single test table
from that data. This single table is used for all of the first set of tests.

Finally, note;

1. Automated materialized views are disabled (always disable this).
2. Result cache is disabled.
3. Automatic rewriting of queries for materialized views with AQUA, is dis-

abled.

That’s it for the test method.

Results
The results are given here for ease of reference, but they are primarily presented,
piece by piece along with explanation, in the Discussion.

See Appendix A for the Python pprint dump of the results dictionary.

The cluster was a two-node ra3.xlplus in us-east-1.

General Experiments
The cluster here has AQUA enabled. The REDSHIFT / AQUA column indi-
cates whether the query was routed to AQUA or ran on the cluster.

1. NO LIKE, NO SIMILAR TO : REDSHIFT : 6526884 rows : 6735744288 bytes
2. LIKE : AQUA : 28 rows : 224 bytes
3. LIKE, COMPARE : AQUA : 21 rows : 168 bytes
4. LIKE, COMPARE, MAX : AQUA : 21 rows : 210 bytes
5. NO LIKE, NO SIMILAR TO, GROUP BY : REDSHIFT : 6526884 rows : 6748798056 bytes
6. LIKE, GROUP BY : AQUA : 28 rows : 280 bytes
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7. LIKE, DISTINCT : AQUA : 6526884 rows : 6683529216 bytes

Main Test
1. NO AQUA / AQUA indicates whether the cluster has AQUA enabled or

disabled.

2. CACHE / RMS indicates whether the table being tested is already in the
local SSD cache, or is only in RMS.

3. EQUALITY / LIKE % / LIKE A / LIKE B / LIKE C / SIMILAR TO
indicates which comparison operator was used in the test query.

4. The test query is repeated three times, to see how behaviour changes due
to caching. The R0/R1/R2 column indicates the repetition number.

5. The results, in brackets, are the times taken in seconds by each slice to
execute the first segment only, which is a scan, two project, and an
aggregate.

A segment is a process and is composed of steps and rows stream through
the steps, so any given step may be the bottleneck, and the end time (and
so the duration) is the time when the process (which is to say, segment)
finishes. There is no information available in the system tables about when
a step finishes, and as a concept that doesn’t quite make sense anyway, as
the slowest step in a segment will slow all the other steps.

NO AQUA : CACHE : EQUALITY : R0 : ( 0:00:09.207733 / 0:00:09.204580 / 0:00:09.013693 / 0:00:08.998986 )
NO AQUA : CACHE : EQUALITY : R1 : ( 0:00:08.993426 / 0:00:08.988677 / 0:00:09.344057 / 0:00:09.348855 )
NO AQUA : CACHE : EQUALITY : R2 : ( 0:00:09.250344 / 0:00:09.248743 / 0:00:09.550706 / 0:00:09.555538 )

NO AQUA : CACHE : LIKE % : R0 : ( 0:00:09.269197 / 0:00:09.262832 / 0:00:09.546041 / 0:00:09.547510 )
NO AQUA : CACHE : LIKE % : R1 : ( 0:00:09.249538 / 0:00:09.244753 / 0:00:09.559937 / 0:00:09.565394 )
NO AQUA : CACHE : LIKE % : R2 : ( 0:00:09.249663 / 0:00:09.244878 / 0:00:09.575789 / 0:00:09.578883 )

NO AQUA : CACHE : LIKE A : R0 : ( 0:00:09.267869 / 0:00:09.269394 / 0:00:09.453487 / 0:00:09.451897 )
NO AQUA : CACHE : LIKE A : R1 : ( 0:00:09.250844 / 0:00:09.249226 / 0:00:09.404371 / 0:00:09.409178 )
NO AQUA : CACHE : LIKE A : R2 : ( 0:00:09.249227 / 0:00:09.250828 / 0:00:09.335284 / 0:00:09.349675 )

NO AQUA : CACHE : LIKE B : R0 : ( 0:00:09.265181 / 0:00:09.271362 / 0:00:09.455281 / 0:00:09.448595 )
NO AQUA : CACHE : LIKE B : R1 : ( 0:00:09.310843 / 0:00:09.316331 / 0:00:09.608579 / 0:00:09.597943 )
NO AQUA : CACHE : LIKE B : R2 : ( 0:00:09.250475 / 0:00:09.245907 / 0:00:09.600638 / 0:00:09.597784 )

NO AQUA : CACHE : LIKE C : R0 : ( 0:00:09.262156 / 0:00:09.268511 / 0:00:09.579287 / 0:00:09.589439 )
NO AQUA : CACHE : LIKE C : R1 : ( 0:00:09.251058 / 0:00:09.249509 / 0:00:09.408094 / 0:00:09.409781 )
NO AQUA : CACHE : LIKE C : R2 : ( 0:00:09.251943 / 0:00:09.247216 / 0:00:09.381876 / 0:00:09.385503 )

NO AQUA : CACHE : SIMILAR TO : R0 : ( 0:00:09.298151 / 0:00:09.192925 / 0:00:09.338577 / 0:00:09.522980 )
NO AQUA : CACHE : SIMILAR TO : R1 : ( 0:00:09.242530 / 0:00:09.259425 / 0:00:09.474999 / 0:00:09.333545 )
NO AQUA : CACHE : SIMILAR TO : R2 : ( 0:00:09.270805 / 0:00:09.216178 / 0:00:09.489395 / 0:00:09.316543 )

NO AQUA : RMS : EQUALITY : R0 : ( 0:00:49.576080 / 0:00:48.813398 / 0:00:53.204578 / 0:00:53.571728 )
NO AQUA : RMS : EQUALITY : R1 : ( 0:00:09.224023 / 0:00:09.420448 / 0:00:09.201846 / 0:00:08.697027 )
NO AQUA : RMS : EQUALITY : R2 : ( 0:00:09.261867 / 0:00:09.265024 / 0:00:09.348863 / 0:00:09.345673 )

NO AQUA : RMS : LIKE % : R0 : ( 0:00:51.763577 / 0:00:51.676877 / 0:01:01.149151 / 0:01:01.664853 )
NO AQUA : RMS : LIKE % : R1 : ( 0:00:08.608361 / 0:00:08.603606 / 0:00:08.657271 / 0:00:08.652435 )
NO AQUA : RMS : LIKE % : R2 : ( 0:00:09.249899 / 0:00:09.244920 / 0:00:09.349570 / 0:00:09.343210 )

NO AQUA : RMS : LIKE A : R0 : ( 0:01:08.177246 / 0:01:08.683746 / 0:00:48.815787 / 0:00:50.480384 )
NO AQUA : RMS : LIKE A : R1 : ( 0:00:08.525502 / 0:00:08.530090 / 0:00:08.568479 / 0:00:08.573761 )
NO AQUA : RMS : LIKE A : R2 : ( 0:00:09.247934 / 0:00:09.250880 / 0:00:09.349531 / 0:00:09.347938 )

NO AQUA : RMS : LIKE B : R0 : ( 0:00:51.321767 / 0:00:53.027248 / 0:00:52.187921 / 0:00:52.088932 )
NO AQUA : RMS : LIKE B : R1 : ( 0:00:08.710603 / 0:00:08.705800 / 0:00:09.350113 / 0:00:09.346366 )
NO AQUA : RMS : LIKE B : R2 : ( 0:00:08.797242 / 0:00:08.802712 / 0:00:09.354782 / 0:00:09.349460 )
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NO AQUA : RMS : LIKE C : R0 : ( 0:00:50.910098 / 0:00:50.761279 / 0:00:49.429202 / 0:00:49.508892 )
NO AQUA : RMS : LIKE C : R1 : ( 0:00:08.354100 / 0:00:08.339638 / 0:00:08.398365 / 0:00:08.226090 )
NO AQUA : RMS : LIKE C : R2 : ( 0:00:09.250590 / 0:00:09.252165 / 0:00:09.351336 / 0:00:09.346647 )

NO AQUA : RMS : SIMILAR TO : R0 : ( 0:00:55.580887 / 0:00:56.749457 / 0:00:52.061169 / 0:00:53.048903 )
NO AQUA : RMS : SIMILAR TO : R1 : ( 0:00:09.057150 / 0:00:09.046908 / 0:00:09.121725 / 0:00:09.127153 )
NO AQUA : RMS : SIMILAR TO : R2 : ( 0:00:09.265822 / 0:00:09.259137 / 0:00:09.366165 / 0:00:09.371360 )

AQUA : CACHE : EQUALITY : R0 : ( 0:00:09.204733 / 0:00:09.176037 / 0:00:08.823521 / 0:00:08.822097 )
AQUA : CACHE : EQUALITY : R1 : ( 0:00:09.248911 / 0:00:09.250495 / 0:00:08.578060 / 0:00:08.576426 )
AQUA : CACHE : EQUALITY : R2 : ( 0:00:09.247384 / 0:00:09.250562 / 0:00:09.352312 / 0:00:09.350722 )

AQUA : CACHE : LIKE % : R0 : ( 0:00:43.327411 / 0:00:43.899995 / 0:00:41.643454 / 0:00:42.943825 )
AQUA : CACHE : LIKE % : R1 : ( 0:00:01.744283 / 0:00:01.791337 / 0:00:03.399622 / 0:00:01.745078 )
AQUA : CACHE : LIKE % : R2 : ( 0:00:01.731125 / 0:00:04.634349 / 0:00:01.807203 / 0:00:01.766072 )

AQUA : CACHE : LIKE A : R0 : ( 0:00:41.195449 / 0:00:41.796387 / 0:00:43.170872 / 0:00:41.442968 )
AQUA : CACHE : LIKE A : R1 : ( 0:00:01.559614 / 0:00:02.288364 / 0:00:01.580123 / 0:00:01.581609 )
AQUA : CACHE : LIKE A : R2 : ( 0:00:01.664650 / 0:00:01.589867 / 0:00:01.605557 / 0:00:01.574602 )

AQUA : CACHE : LIKE B : R0 : ( 0:00:43.572248 / 0:00:42.263507 / 0:00:42.688915 / 0:00:46.140976 )
AQUA : CACHE : LIKE B : R1 : ( 0:00:01.851338 / 0:00:01.867054 / 0:00:01.858184 / 0:00:01.770956 )
AQUA : CACHE : LIKE B : R2 : ( 0:00:01.623430 / 0:00:01.566698 / 0:00:01.577199 / 0:00:01.511778 )

AQUA : CACHE : LIKE C : R0 : ( 0:00:42.210546 / 0:00:43.961976 / 0:00:42.622863 / 0:00:46.603875 )
AQUA : CACHE : LIKE C : R1 : ( 0:00:00.901284 / 0:00:00.917168 / 0:00:00.850170 / 0:00:00.905184 )
AQUA : CACHE : LIKE C : R2 : ( 0:00:01.002802 / 0:00:00.972192 / 0:00:00.913016 / 0:00:01.145805 )

AQUA : CACHE : SIMILAR TO : R0 : ( 0:00:46.094824 / 0:00:42.369193 / 0:00:48.642382 / 0:00:41.628065 )
AQUA : CACHE : SIMILAR TO : R1 : ( 0:00:01.521027 / 0:00:01.583562 / 0:00:01.595717 / 0:00:01.567324 )
AQUA : CACHE : SIMILAR TO : R2 : ( 0:00:01.490310 / 0:00:01.542446 / 0:00:01.602099 / 0:00:01.591313 )

AQUA : RMS : EQUALITY : R0 : ( 0:00:50.714166 / 0:00:49.495406 / 0:00:49.868700 / 0:00:49.279289 )
AQUA : RMS : EQUALITY : R1 : ( 0:00:08.931096 / 0:00:08.995204 / 0:00:08.328496 / 0:00:08.772002 )
AQUA : RMS : EQUALITY : R2 : ( 0:00:09.272983 / 0:00:09.278882 / 0:00:09.349943 / 0:00:09.346755 )

AQUA : RMS : LIKE % : R0 : ( 0:00:45.996555 / 0:00:48.870548 / 0:00:45.798664 / 0:00:46.332533 )
AQUA : RMS : LIKE % : R1 : ( 0:00:01.889942 / 0:00:01.829568 / 0:00:01.786090 / 0:00:03.406696 )
AQUA : RMS : LIKE % : R2 : ( 0:00:01.773647 / 0:00:01.848038 / 0:00:01.817244 / 0:00:01.824604 )

AQUA : RMS : LIKE A : R0 : ( 0:00:46.308171 / 0:01:44.695472 / 0:00:46.558651 / 0:00:48.327062 )
AQUA : RMS : LIKE A : R1 : ( 0:00:01.611775 / 0:00:01.605035 / 0:00:01.549466 / 0:00:01.516289 )
AQUA : RMS : LIKE A : R2 : ( 0:00:01.580145 / 0:00:01.640644 / 0:00:01.537107 / 0:00:01.512776 )

AQUA : RMS : LIKE B : R0 : ( 0:00:46.227704 / 0:00:46.398593 / 0:00:48.542814 / 0:00:49.854854 )
AQUA : RMS : LIKE B : R1 : ( 0:00:01.596248 / 0:00:01.557935 / 0:00:01.602313 / 0:00:01.626484 )
AQUA : RMS : LIKE B : R2 : ( 0:00:01.594181 / 0:00:01.576170 / 0:00:02.305109 / 0:00:01.566581 )

AQUA : RMS : LIKE C : R0 : ( 0:00:51.031678 / 0:00:47.104351 / 0:00:47.005895 / 0:00:52.106889 )
AQUA : RMS : LIKE C : R1 : ( 0:00:00.887638 / 0:00:01.020990 / 0:00:00.814183 / 0:00:00.874858 )
AQUA : RMS : LIKE C : R2 : ( 0:00:00.923204 / 0:00:00.924688 / 0:00:00.892344 / 0:00:00.909735 )

AQUA : RMS : SIMILAR TO : R0 : ( 0:00:49.881206 / 0:01:32.406387 / 0:00:46.325607 / 0:00:46.805514 )
AQUA : RMS : SIMILAR TO : R1 : ( 0:00:01.543379 / 0:00:01.624610 / 0:00:01.553433 / 0:00:01.534623 )
AQUA : RMS : SIMILAR TO : R2 : ( 0:00:01.608424 / 0:00:01.597847 / 0:00:01.615707 / 0:00:01.618182 )

Discussion
General Experiments
1. NO LIKE, NO SIMILAR TO : REDSHIFT : 6526884 rows : 6735744288 bytes
2. LIKE : AQUA : 28 rows : 224 bytes
3. LIKE, COMPARE : AQUA : 21 rows : 168 bytes
4. LIKE, COMPARE, MAX : AQUA : 21 rows : 210 bytes
5. NO LIKE, NO SIMILAR TO, GROUP BY : REDSHIFT : 6526884 rows : 6748798056 bytes
6. LIKE, GROUP BY : AQUA : 28 rows : 280 bytes
7. LIKE, DISTINCT : AQUA : 6526884 rows : 6683529216 bytes
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1. NO LIKE, NO SIMILAR TO

select count(*) from table_0 where column_2 = 'aaa...';

Query does not use LIKE, or SIMILAR TO, and so is expected not to use
AQUA, and this is what is found. The string being searched for is 1024 ‘a’
characters, which is one of the two values in the table, and is 50% of the
rows. The scan step as we see here returns in half the rows in the table
(the total row count in the table is 13,053,768).

2. LIKE

select count(*) from table_0 where column_2 like '%a%';

Now we replace the equality operator with LIKE, and by this we expect
AQUA to be invoked, and it is; the scan type became 35, the AQUA scan.
We can see that the amount of data returned from AQUA is very small;
it is returning the results of the first segment to the Redshift cluster.

3. LIKE, COMPARE

select count(*) from table_0 where column_2 like '%a%' and
column_1 >= 1;

We repeat the query, but adding in a simple extra comparison clause on
another column. We can see from very small number of rows returned
from the scan step that AQUA is still invoked, and is handling the extra
clause.

4. LIKE, COMPARE, MAX

select count(*), max(column_1) from table_0 where column_2
like '%a%' and column_1 >= 1;

Here, a max() is added, and once again, AQUA is handling it.

5. NO LIKE, NO SIMILAR TO, GROUP BY

select count(*) from table_0 where column_2 = '%s' group by
column_1;

Here we remove the LIKE, and add a GROUP BY. No LIKE, no AQUA.

6. LIKE, GROUP BY

select count(*) from table_0 where column_2 like '%a%' group
by column_1;

Now we replace the equality operator with a LIKE, AQUA is invoked, and
is handling the GROUP BY.

7. LIKE, DISTINCT

select distinct column_2 from table_0 where column_2 like
'%a%';

Finally, this query introduces distinct. Where a LIKE is issued, we get
AQUA, but now we see AQUA returning all the matching rows (half the
table), because AQUA nodes run in parallel and have no organizing master
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node, so they cannot handle a distinct; they must return the data to
Redshift.

So, what do we make of this?

For the very limited set of queries issued, the criteria for invoking AQUA seems
straightforward; if the query uses a LIKE or a SIMILAR TO, the given scan
step goes to AQUA. Given the obfuscations and marketing AWS come out with,
all the stuff about “Redshift intelligently choosing when to use AQUA” makes
me very strongly suspect that LIKE and SIMILAR TO simply always invoke
AQUA.

We see AQUA is handling comparisons and group by and max(). SQL has
an enormous range of functionality so I’m not in a position to quickly write a
generalized SQL test to see what AQUA can or cannot do.

However, we see distinct is not handled, and causes AQUA to return all
matching rows to the Redshift cluster.

To my eye then AQUA - in line with such descriptions as AWS have emitted - is
a multi-node distributed set of independent processors, each of which processes
a part of a given set of data, and there is no mechanism for those processors to
communicate between themselves.

In other words, the same design as Redshift Spectrum; the idea is you care-
fully craft your queries so that the multi-node distributed system can perform
scanning and aggregation work and return tiny results to the cluster.

The problem is if you issue the wrong query, the multi-node distributed system
cannot handle it, and must, perforce, return some, most or even all of the table
back to the Redshift cluster.

AWS do not document the capabilities of these systems, AQUA or Spectrum, so
you cannot know in advance what can or cannot be done; you can only find by
trying it, which is a ridiculous; every developer in the world has better things
to do that reproduce the same work trying to guess what these systems can do.

In fact, where AWS have obscured the nature of both systems from users (last I
heard the line being pedalled by TAMs is “Spectrum is the same as Redshift but
cheaper”), what normally happens is users have no clue at all about these issues
and no clue why Redshift is performing badly (and these days, that means they
now eventually move to Snowflake).

With Spectrum, where Spectrum is intended for data volumes larger than a
cluster can handle, getting the query wrong can perfectly well means the cluster
grinds to a halt, until it eventually completely fills local disk and then kills the
query.

For AQUA, I would say where the tables being used are expected to be nor-
mal Redshift tables (even if RMS means those tables can now be very large),
probably the consequences are going to be more manageable.

Moreover, LIKE and SIMILAR TO are in my experience very rare and almost
unheard of, respectively. In 25 years of writing SQL, I have never used SIMILAR
TO. This should, overall, act to greatly minimize any adverse consequences, as
I suspect AQUA in the very large majority of cases simply is not in use.
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Main Test
So, I will progress down the results, comparing NO AQUA with AQUA.

To begin with, we have CACHE and EQUALITY.
NO AQUA : CACHE : EQUALITY : R0 : ( 0:00:09.207733 / 0:00:09.204580 / 0:00:09.013693 / 0:00:08.998986 )
NO AQUA : CACHE : EQUALITY : R1 : ( 0:00:08.993426 / 0:00:08.988677 / 0:00:09.344057 / 0:00:09.348855 )
NO AQUA : CACHE : EQUALITY : R2 : ( 0:00:09.250344 / 0:00:09.248743 / 0:00:09.550706 / 0:00:09.555538 )

AQUA : CACHE : EQUALITY : R0 : ( 0:00:09.204733 / 0:00:09.176037 / 0:00:08.823521 / 0:00:08.822097 )
AQUA : CACHE : EQUALITY : R1 : ( 0:00:09.248911 / 0:00:09.250495 / 0:00:08.578060 / 0:00:08.576426 )
AQUA : CACHE : EQUALITY : R2 : ( 0:00:09.247384 / 0:00:09.250562 / 0:00:09.352312 / 0:00:09.350722 )

As we are using EQUALITY, AQUA should make no difference, and we see it
does not.

The table used in the query is 12,988 blocks, and processing that in 9 seconds
means processing about 1,440 megabytes per second, which would mean about
720 megabytes per second per node.

Next, we have CACHE and LIKE % (the results for all the LIKE queries iden-
tical, so I do not discuss them separately).
NO AQUA : CACHE : LIKE % : R0 : ( 0:00:09.269197 / 0:00:09.262832 / 0:00:09.546041 / 0:00:09.547510 )
NO AQUA : CACHE : LIKE % : R1 : ( 0:00:09.249538 / 0:00:09.244753 / 0:00:09.559937 / 0:00:09.565394 )
NO AQUA : CACHE : LIKE % : R2 : ( 0:00:09.249663 / 0:00:09.244878 / 0:00:09.575789 / 0:00:09.578883 )

AQUA : CACHE : LIKE % : R0 : ( 0:00:43.327411 / 0:00:43.899995 / 0:00:41.643454 / 0:00:42.943825 )
AQUA : CACHE : LIKE % : R1 : ( 0:00:01.744283 / 0:00:01.791337 / 0:00:03.399622 / 0:00:01.745078 )
AQUA : CACHE : LIKE % : R2 : ( 0:00:01.731125 / 0:00:04.634349 / 0:00:01.807203 / 0:00:01.766072 )

Where LIKE is being used, AQUA should be invoked, and we will see if makes
a difference, and pow it really does - the first segment of the first AQUA query
took a jaw-dropping 43 seconds.

This behaviour is not expected, is critically significant, and AWS have made no
mention of it at all.

Mmm. I have to say, in my experience, Redshift features are like this. AWS, at
least with regard to Redshift, which is the only area I know about, emits only
marketing; relentlessly positive, obfuscates all weaknesses, and says nothing
about implementation or usage. Only strengths are discussed. You simply
cannot trust AWS, at least for Redshift; information is always hidden, and
critical information at that. Keep that in mind, always, when receiving any
information from AWS or its staff.

Moving on, to R1 and R2, we then see something else of note - once that slow
first query has completed, AQUA then has the first segment running in about 1.7
seconds. NO AQUA is taking about 9.4 seconds, across the board, no variations.

We see then AQUA is faster, and by quite a bit - about 6x - but there’s a huge
great big stonking latency on the first query. I did some impromptu testing, and
I found once the initial slow query has passed on a given table, all the LIKE
queries were accelerated.

If we look in the raw results at the disk in use before and after the slow first
AQUA query, we see disk use has not changed, remaining at 91,016 blocks.

It then is not the case that the table is being downloaded to the local SSD cache;
for we do see in the RMS tests, when a table is not in cache and it is accessed,
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the disk used has increased by the expected amount, so the measure of disk use
is working.

AWS do (for whatever it’s worth) describe AQUA as a “caching layer”. To my
eye that’s not quite right (because AQUA cannot fulfil a query until it loads the
table, where a cache normally is a layer over a separate, independent system),
but it’s close enough not to worry about; when you query AQUA, if it doesn’t
have your table, it has to fetch it, and then it can fulfil your query. So it’s slow
and then fast, which is what you expect from a cache.

How and where this cached copy is being stored, I have no idea, nor how large
the cache is, or how quickly tables are retired.

Finally, note that the NO AQUA EQUALITY and all the LIKE queries run
at the same speed. This is unexpected - LIKE should be more expensive - but
it may be the data and LIKE pattern I’ve chosen are such that the work is
identical, where LIKE can in fact be made much more expensive with more
complex patterns.

Next, CACHE and SIMILAR TO.
NO AQUA : CACHE : SIMILAR TO : R0 : ( 0:00:09.298151 / 0:00:09.192925 / 0:00:09.338577 / 0:00:09.522980 )
NO AQUA : CACHE : SIMILAR TO : R1 : ( 0:00:09.242530 / 0:00:09.259425 / 0:00:09.474999 / 0:00:09.333545 )
NO AQUA : CACHE : SIMILAR TO : R2 : ( 0:00:09.270805 / 0:00:09.216178 / 0:00:09.489395 / 0:00:09.316543 )

AQUA : CACHE : SIMILAR TO : R0 : ( 0:00:46.094824 / 0:00:42.369193 / 0:00:48.642382 / 0:00:41.628065 )
AQUA : CACHE : SIMILAR TO : R1 : ( 0:00:01.521027 / 0:00:01.583562 / 0:00:01.595717 / 0:00:01.567324 )
AQUA : CACHE : SIMILAR TO : R2 : ( 0:00:01.490310 / 0:00:01.542446 / 0:00:01.602099 / 0:00:01.591313 )

The results are identical to LIKE, as expected. I included this here just to show
that SIMILAR TO is indeed also being handled by AQUA.

Next, we’re on to the RMS tests - where the table is not in the cache. This
is really interesting stuff, because we will finally have some idea of how much
latency is introduced by using RMS rather than local SSD cache.

We begin with RMS and EQUALITY, and here I also include the result (given
above already) for CACHE and EQUALITY, so we can compare directly to the
latency for RMS.
NO AQUA : CACHE : EQUALITY : R0 : ( 0:00:09.207733 / 0:00:09.204580 / 0:00:09.013693 / 0:00:08.998986 )
NO AQUA : CACHE : EQUALITY : R1 : ( 0:00:08.993426 / 0:00:08.988677 / 0:00:09.344057 / 0:00:09.348855 )
NO AQUA : CACHE : EQUALITY : R2 : ( 0:00:09.250344 / 0:00:09.248743 / 0:00:09.550706 / 0:00:09.555538 )

NO AQUA : RMS : EQUALITY : R0 : ( 0:00:49.576080 / 0:00:48.813398 / 0:00:53.204578 / 0:00:53.571728 )
NO AQUA : RMS : EQUALITY : R1 : ( 0:00:09.224023 / 0:00:09.420448 / 0:00:09.201846 / 0:00:08.697027 )
NO AQUA : RMS : EQUALITY : R2 : ( 0:00:09.261867 / 0:00:09.265024 / 0:00:09.348863 / 0:00:09.345673 )

AQUA : CACHE : EQUALITY : R0 : ( 0:00:09.204733 / 0:00:09.176037 / 0:00:08.823521 / 0:00:08.822097 )
AQUA : CACHE : EQUALITY : R1 : ( 0:00:09.248911 / 0:00:09.250495 / 0:00:08.578060 / 0:00:08.576426 )
AQUA : CACHE : EQUALITY : R2 : ( 0:00:09.247384 / 0:00:09.250562 / 0:00:09.352312 / 0:00:09.350722 )

AQUA : RMS : EQUALITY : R0 : ( 0:00:50.714166 / 0:00:49.495406 / 0:00:49.868700 / 0:00:49.279289 )
AQUA : RMS : EQUALITY : R1 : ( 0:00:08.931096 / 0:00:08.995204 / 0:00:08.328496 / 0:00:08.772002 )
AQUA : RMS : EQUALITY : R2 : ( 0:00:09.272983 / 0:00:09.278882 / 0:00:09.349943 / 0:00:09.346755 )

Where the test table is not in cache, it is expected it must be brought down
from RMS, and we see in both R0 cases the first segment is taking about 50
seconds.

Looking at the disk use before and after the first RMS query, we see disk use
increases from 1,427,117 to 1,439,879 blocks, and 1,427,117 to 1,439,794 blocks,
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respectively. This makes the increase 12,762 and 12,677 blocks, respectively.

The test tables look like this;
schema_name | table_name | column_name | data_type | encoding | info | sblks | ublks | tblks

-------------+------------+-------------+------------+----------+------+-------+-------+-------
public | table_0 | column_1 | int2 | raw | .dn | 0 | 28 | 28
public | table_0 | column_2 | char(1024) | raw | . n | 0 | 12852 | 12852
public | table_0 | deletexid | int8 | raw | . n | 0 | 4 | 4
public | table_0 | insertxid | int8 | raw | . n | 0 | 4 | 4
public | table_0 | oid | oid | raw | . n | 0 | 100 | 100

(5 rows)

In both cases, this is a little bit less than the 12,852 blocks of column_2, for no
obvious reason, but we can see what’s going on.

Normally, that first segment takes about 9 seconds, so we’re looking at 41 sec-
onds of RMS latency on a 12,988 block table.

We finally have a number for the overhead of RMS!

That’s about 320 megabytes per second, which is 160 megabytes per second per
node.

That compares to the 720 megabytes per node for exact same operation using
the local SSD cache.

That makes local SSD cache 4.5x faster than RMS.

However, this is all for a two-node cluster running a single query.

With a larger cluster, more nodes should mean more bandwidth, and larger node
types probably have more network I/O as well, but it is reasonable to think this
bandwidth is contended, so if we had ten concurrent queries all pulling from
RMS, we would with our current cluster see about 32 megabytes per seconds,
and the delay for our test query would become a slightly eye-watering 410 sec-
onds.

That latency is absolutely fine if you’re using Redshift as its design choices
mandate - for Big Data queries, where the data is vast, and so even with the
staggering efficiency provided by correctly operated sorting, queries still takes
some time - but is death on toast if Redshift is, as it always is, being used
incorrectly, as if it were an unsorted, row-store database, maybe with BI tools
sitting on the top too, like a miniature Hobbit atop the Cake of Doom.

One other interesting detail about RMS is the total amount of disk used while
the 184 test tables are being made. This is not part of the focus of this white
paper, so I’ve not included it in the results proper, but examine this logging
which was produced as the tables were made, which shows the time taken in
seconds and the total disk in use after the table is created, in blocks;
table_0... 0:00:53.084546 / 26061
table_1... 0:00:29.236125 / 39042
table_2... 0:00:28.739220 / 52034
[snip]
table_69... 0:00:31.040292 / 922507
table_70... 0:00:29.178472 / 935502
table_71... 0:00:29.279066 / 948496
[snip]
table_144... 0:00:31.125531 / 1505138
table_145... 0:00:29.740355 / 1518143
table_146... 0:00:29.864787 / 1336161
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The amount of disk used increases by the size of the new tables, until we get
to a bit more than 1,500,000 blocks, when Redshift then dumps about 200,000
blocks to RMS, freeing up space. This pattern repeats.

The total disk available in the two-node test cluster, according to
stv_partitions, is 1,908,734 blocks.

Either about half a terabyte is being kept available, or the amount of disk being
used for cache is significantly less than the total disk available.

Next, RMS and LIKE % (the results for LIKE %, LIKE A and LIKE B are
identical, so I do not discuss them separately).
NO AQUA : RMS : LIKE % : R0 : ( 0:00:51.763577 / 0:00:51.676877 / 0:01:01.149151 / 0:01:01.664853 )
NO AQUA : RMS : LIKE % : R1 : ( 0:00:08.608361 / 0:00:08.603606 / 0:00:08.657271 / 0:00:08.652435 )
NO AQUA : RMS : LIKE % : R2 : ( 0:00:09.249899 / 0:00:09.244920 / 0:00:09.349570 / 0:00:09.343210 )

AQUA : RMS : LIKE % : R0 : ( 0:00:45.996555 / 0:00:48.870548 / 0:00:45.798664 / 0:00:46.332533 )
AQUA : RMS : LIKE % : R1 : ( 0:00:01.889942 / 0:00:01.829568 / 0:00:01.786090 / 0:00:03.406696 )
AQUA : RMS : LIKE % : R2 : ( 0:00:01.773647 / 0:00:01.848038 / 0:00:01.817244 / 0:00:01.824604 )

Interesting stuff.

With NO AQUA, we see with the first query, with the long delay, disk use went
from 1,440,006 blocks to 1,452,862 blocks, an increase of 12,856.

With AQUA, we see with the first query, with the long delay, disk use went
from 1,439,981 to 1,439,981 - which is to say, did not change

I note the following;

1. The difference in NO AQUA and AQUA performance for the second and
third queries is about 7.7 seconds.

2. Looking at LIKE %, LIKE A and LIKE B, that the difference in the time
taken for the slow first query is usually about 6 seconds (barring special
cases, as we see here with the over one minute time of slices 2 and 3, which
will be discussed shortly).

3. In the NO AQUA scan step, a total of 13,053,768 rows were emitted,
amounting to 13,471,488,576 bytes.

4. In the AQUA scan step, a total of 7 rows were emitted, amounting to 56
bytes.

To my eye, RMS is being read in both first queries, and the acceleration provided
by AQUA for processing the data is accounting for most of the difference in the
duration of the slow first query.

Finally, RMS and LIKE C.
NO AQUA : RMS : LIKE C : R0 : ( 0:00:50.910098 / 0:00:50.761279 / 0:00:49.429202 / 0:00:49.508892 )
NO AQUA : RMS : LIKE C : R1 : ( 0:00:08.354100 / 0:00:08.339638 / 0:00:08.398365 / 0:00:08.226090 )
NO AQUA : RMS : LIKE C : R2 : ( 0:00:09.250590 / 0:00:09.252165 / 0:00:09.351336 / 0:00:09.346647 )

AQUA : RMS : LIKE C : R0 : ( 0:00:51.031678 / 0:00:47.104351 / 0:00:47.005895 / 0:00:52.106889 )
AQUA : RMS : LIKE C : R1 : ( 0:00:00.887638 / 0:00:01.020990 / 0:00:00.814183 / 0:00:00.874858 )
AQUA : RMS : LIKE C : R2 : ( 0:00:00.923204 / 0:00:00.924688 / 0:00:00.892344 / 0:00:00.909735 )

Curious. LIKE C matches no records. NO AQUA scans the table as usual,
but AQUA is now only taking about 0.9 seconds, down from about 1.7 seconds.
This would likely reveal something about how AQUA works internally, but I
have no idea what :-)
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Performance Outliers

In the set of queries published here, 72 queries in total, we have one outlier;
AQUA : RMS : SIMILAR TO : R0 : ( 0:00:49.881206 / 0:01:32.406387 / 0:00:46.325607 / 0:00:46.805514 )

In the test run prior to this, there were two;
AQUA : CACHE : LIKE C : R0 : ( 0:00:44.990372 / 0:05:21.654734 / 0:00:44.782741 / 0:01:33.518136 )
AQUA : RMS : SIMILAR TO : R0 : ( 0:00:45.453043 / 0:02:32.272677 / 0:00:46.179583 / 0:00:47.968454 )

That’s a five minute scan time on slice 1, which ought to have been about 45
seconds, and remember, this is a completely idle cluster.

Now, in the prior test run the test data was not as I had intended - alternating
rows of values - but rather was basically a few long contiguous sequences of each
value, so of the 12,988 blocks, very nearly almost all were one value only, and
there were a large number of contiguous blocks with the same value. The total
number of rows of each value remained equal.

This to my eye should not in any way lead to outlier performances.

There is not enough information here to say much about this, whether the
problem is in AQUA, RMS, or the cluster, but considering a typical busy cluster
runs hundreds of thousands of queries per day, three seriously slow queries
out of two lots of 76 queries is a significant issue, and raises questions about
implementation and viability in production systems.

Step Plans

I have coined the term “step plan” for the listing of all steps taken by a query.
It is a complete and canonical listing all of work done by a query, and can only
be produced once a query has completed (as this information is present in the
system tables only after the query has completed). It’s a bit like EXPLAIN,
only accurate and not misleading.

See Appendix B provides a step-plan for NO AQUA and for AQUA for the main
tests. All of the test queries produce the same step plan.

The main difference between AQUA and NO AQUA is seen in the first scan
step, which is step 0 in segment 0.

First, we see in the Notes column for AQUA, a scan using the AQUA system,
but for NO AQUA we have a normal scan.

Second, we see the number of rows and bytes returned by the scan is completely
different. The normal scan is returning all rows, the AQUA scan is returning
only seven rows to each slice, where each row can reasonably be assumed to be
eight bytes, an int8, and representing the output of the count(*) on an AQUA
processor. That there are seven rows might indicate seven AQUA processors
were used.

Now, what’s interesting about this is that the rest of the step plan is unchanged.

Even though AQUA performed the aggregation, we still see the aggregate step
in segment 0. In the NO AQUA scan, this step is performing the count(*)
operation.
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To my eye, this is a blunder. It is not possible to know what AQUA is doing
inside its scan step; it is a black box. My ability to obtain information about
what’s going on with queries and in the cluster has been degraded. Redshift has
profound issues with its system tables, and decisions like this are what have led
to the current state of affairs.

(I must note also that with Redshift Serverless, the system tables have been
eviscerated and barely exist. It looks like AWS would like us to put our hands
over our eyes and trust them, and their marketing, completely. I utterly dis-
courage use of Serverless. No database which almost fully obscures its internal
working from its users can be trusted; and to my eye, this hiding of information
from users, and the hyperbole with which AWS market Redshift, are one and
the same.)

Thoughts
AQUA has a high initial overhead, loading a table from RMS, and then offers
useful reductions in scan times, so a certain number of benefiting queries must
be issued for the sum of the improvement to outweigh the initial overhead.

As such, AQUA is a not a magic bullet : it does not unconditionally solve
scalability for searching strings with wildcards. It offers instead a trade-off,
where there is a high initial cost in return for improved performance.

For example, with one of the test tables, it takes AQUA 41 seconds to make its
copy. Having done so, AQUA is then about 7.3 seconds faster than the Redshift
cluster (assuming the table is in the local SSD cache). About six or so queries
must be issued to break even.

If only a single or a few such queries are run before the table expires from the
AQUA cache, the system will be slower with AQUA, not faster.

I am then of the view that the decision by the devs to enable AQUA by default
is a blunder, as AQUA can perfectly well reduce performance. Light LIKE users
will be actually harmed. Heavy LIKE users are going to benefit. Use must
be decided on a case-by-case basis, by well-informed end-users, not globally by
AWS.

To work around it, as AWS in their infinite wisdom have removed the option
from the Redshift Console, you must no longer start clusters from the Console,
but use any other interface, such as the AWS CLI or boto3 via Python and so
on.

Finally, I note on-line two AQUA performance studies, both by AWS engineers.
The first is the tech blog post made on the day AQUA went GA, the second is
on a different site, getofo.net. It looks to me like both studies have pre-cached
their tables before running their tests and have not disclosed this information
the reader and, I think, given these are AWS staff engineers, they knew and
therefore deliberately withheld this information.

RMS
Finally, a serendipitous discovery about RMS.
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As noted, in the penultimate test run the data test was not alternating rows,
but almost entirely blocks with only a single value.

The first query for NO AQUA, RMS and EQUALITY produced the following
result;
NO AQUA : RMS : EQUALITY : R0 : ( 0:00:22.401345 / 0:00:22.573264 / 0:00:25.289982 / 0:00:24.755262 )

Note the 23.5 second duration, rather than the expected 50 seconds.

Examining the change in disk use from this query, the cluster went from
1,414,019 blocks to 1,420,475 blocks - a change of 6,456 blocks! in other words,
the cluster had downloaded from RMS half the table only. This explains the
reduced first segment time.

Redshift maintains in memory the Zone Map, and it seems evident that this is
scanned, and then the blocks and only the blocks which could contain the rows
of interest are brought down from RMS.

This means RMS is a block-based store, not a table-based stored, and the local
SSD cache contains only the blocks which are actually being used.

In the AWS documentation and videos and so on, S3 and RMS are at times used
synonymously. I’m not sure if this is really true; however, if RMS (whatever it
is) behaves like S3, then a file can be read from any point, and for any number
of bytes - so reading blocks is fine - but a file can only be written in whole. You
cannot modify a file, only replace it.

It is unlikely RMS is writing a file per block; that would be a staggeringly vast
number of files. Probably a file is a certain size, such as 128mb, or a gigabyte.

A critical unanswered question is how large the files are, as this is central to
the performance of RMS, as it dictates how much data must be collected and
flushed when space must be reclaimed from the local SSD cache.

We saw in the results when the cache reached about 1.5m blocks, it dropped
by about 200,000 blocks. This is the only data point. It might be that 200mb
is thee size of the files used by RMS, but it could perfectly well be otherwise,
where RMS is in this case emitting many smaller files, having decided it wants
to reclaim 200mb of space.

Conclusions
AQUA appears to be a multi-node distributed set of independent processors,
each of which processes a part of the data in a table, but where there is no
mechanism for those processors to communicate between themselves; in other
words, the same design as Redshift Spectrum.

It is then that AQUA can implement that functionality an independent proces-
sor can perform; which is to say, the processor scans its own portion of the data,
performing any work which can be performed by examining a single row at a
time in a single table, and by maintaining aggregate information from those
rows; so for example, GROUP BY or say MAX() works and works well, re-
turning aggregated and therefore typically very small output, but DISTINCT
cannot work well, and returns all matching rows to the cluster.
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Of that which can be implemented, what has been implemented is unknown.
AWS do not document this information, for AQUA or indeed for Spectrum.
This makes writing queries correctly for AQUA, as with Spectrum, on the face
of it, problematic.

AQUA has no access to, and does not use, the local SSD cache in the Redshift
cluster; nor is it embedded in RMS and processing blocks as they are read.

Rather, when AQUA handles a query, AQUA must download the table being
scanned from RMS to itself (presumably to its own SSDs). This involves a
considerable delay. For the test tables, which are 12,988 blocks, with a two-
node completely idle ra3.xlplus cluster, this takes about 41 seconds.

Although I have not specifically tested it, I think it must then be that this read
by AQUA from RMS does not load the table into the cluster local SSD cache.
If this must then occur (perhaps one query with LIKE is issued, and then one
without), the load from RMS must then occur again, only this time to the local
SSD cache in the cluster.

The Redshift cluster, without AQUA, takes about 9.3 seconds to run a LIKE
query on a test table in the local SSD cache.

Once AQUA has downloaded the table from RMS, it takes about 1.7 seconds
to run the same query.

Once AQUA has downloaded a table, all LIKE and SIMILAR TO queries on
that table appear to run faster.

For AQUA to improve performance, enough queries must be handed before the
table needs to be downloaded again that the improvement in performance for
each query occurs enough times to outweigh the large initial second overhead.

If this is not the case, if only one or a few queries are issued, AQUA will reduce
performance, not improve it.

There are no findings in this investigation about when that initial delay is re-
peated.

AQUA is invoked when and only when a query uses a LIKE or SIMILAR TO
operator, which is a narrow use case, and it seems, for the limited testing done,
always to be invoked. I suspect this is probably the case, as if more intelligence
were being used, DISTINCT would not be being issued to AQUA.

Where AQUA and Spectrum are the same fundamental design, they are operated
in the same way; queries which use AQUA or Spectrum must be carefully crafted
to ensure the queries issue work to AQUA or Spectrum which those systems
can perform, with only minimal aggregated results being returned the Redshift
cluster.

If this is not done, if the queries issued are inappropriate, both AQUA and
Spectrum necessarily must return some, most or even all of the tables involved
to the Redshift cluster.

With Spectrum, where the tables are intended to be larger than the cluster can
handle, this typically will grind the cluster to a halt for a considerable period
of time, until the cluster finally fills all available disk and then kills the query.
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With AQUA, the symptoms should be more tolerable, as the tables in use
typically are going to be normal Redshift tables, of a size the cluster can handle
without actually grinding to a halt.

Out of the final two runs of 76 test queries, where query times were closely
examined, 3 queries were found to have had exceptionally long run times - in
one case, over five minutes, compared to the usual time of about 45 seconds.

No investigation has been performed, so it is not clear if the issue is AQUA, RMS,
or the cluster. Nevertheless, such delays are not expected, or so frequently, on
a completely idle cluster running the simplest of queries.

RMS
A number of serendipitous discoveries were made about RMS.

1. The total disk on a two node ra3.xlplus is 1,908,734 blocks. During the
work to over-fill the cache, it was found the total disk used would peak at
about 1,500,000 blocks and then drop to about 1,300,000 blocks.

2. RMS is block-based storage, rather than table-based storage. Redshift,
presumably by using information in the Zone Map, brings down from
RMS only those blocks which are necessary to fulfil a query; a table then
can be partially in RMS and partially in the local SSD cache.

3. With ra3.xlplus nodes, the bandwidth to RMS is about 160mb/sec per
node.

4. With ra3.xlplus nodes, the bandwidth to the local SSD cache is about
720mb/sec per node.

Revision History
v1

• Initial release.

v2
• Reworded some criticism of AWS, to be moderately more diplomatic.

v3
• Minor improvements to abstract.

v4
• Minor editing to introduction.
• Changed to Redshift Research Project (AWS have a copyright on “Amazon

Redshift”).
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Appendix A : Raw Data Dump
Note these results are completely unprocessed; they are a raw dump of the
results, so the original, wholly unprocessed data, is available.

General Experiments
{'us-east-1': {'ra3.xlplus': {'LIKE': [[0,

datetime.timedelta(seconds=1, microseconds=508120),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=630037),
7,
56,
35],

[2,
datetime.timedelta(seconds=3, microseconds=197689),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=562073),
7,
56,
35]],

'LIKE, COMPARE': [[0,
datetime.timedelta(seconds=1, microseconds=602977),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=679212),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=695224),
7,
56,
35],

[3,
datetime.timedelta(microseconds=71109),
0,
0,
35]],

'LIKE, COMPARE, MAX': [[0,
datetime.timedelta(seconds=1, microseconds=595360),
7,
70,
35],

[1,
datetime.timedelta(seconds=1, microseconds=631216),
7,
70,
35],

[2,
datetime.timedelta(seconds=1, microseconds=735196),
7,
70,
35],

[3,
datetime.timedelta(microseconds=90364),
0,
0,
35]],

'LIKE, DISTINCT': [[0,
datetime.timedelta(seconds=2, microseconds=898145),
1631721,
1670882304,
35],

[1,
datetime.timedelta(seconds=2, microseconds=843230),
1631721,
1670882304,
35],

[2,
datetime.timedelta(seconds=2, microseconds=944288),
1631721,
1670882304,
35],

[3,
datetime.timedelta(seconds=2, microseconds=886223),
1631721,
1670882304,
35]],

'LIKE, GROUP BY': [[0,
datetime.timedelta(seconds=1, microseconds=723577),
7,
70,
35],

[1,
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datetime.timedelta(seconds=1, microseconds=719165),
7,
70,
35],

[2,
datetime.timedelta(seconds=3, microseconds=301341),
7,
70,
35],

[3,
datetime.timedelta(seconds=1, microseconds=626814),
7,
70,
35]],

'NO LIKE, NO SIMILAR TO': [[0,
datetime.timedelta(seconds=6, microseconds=54411),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=6, microseconds=104342),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=6, microseconds=82442),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=6, microseconds=85886),
1631721,
1683936072,
2]],

'NO LIKE, NO SIMILAR TO, GROUP BY': [[0,
datetime.timedelta(seconds=6, microseconds=744856),
1631721,
1687199514,
2],

[1,
datetime.timedelta(seconds=6, microseconds=885083),
1631721,
1687199514,
2],

[2,
datetime.timedelta(seconds=6, microseconds=715905),
1631721,
1687199514,
2],

[3,
datetime.timedelta(seconds=6, microseconds=720547),
1631721,
1687199514,
2]]}}}

Main Test
The dictionary structure is;

[region][node_type_name]['aqua'][aqua_enabled_flag][rms_flag][compare_type]

aqua_enabled_flag meaning
True AQUA enabled
False AQUA disabled

rms_flag meaning
True table is in RMS only
False table is in RMS and local cache

The compare_type can be equality, like_%, like_a, like_b, like_c, or
similar to.

Of these, equality will not invoke AQUA. The others all will (assuming it is
enabled in the cluster).
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The results are;

[ [slice, duration, rows, bytes, type], disk_before, disk_after ]

The initial list is taken from stl_scan, and is for the first scan step of the query,
which is the relevant scan step.

Datum Meaning
slice slice number
duration time taken to execute the first

segment on this slice
rows number of rows processed by the

scan step
bytes number of byets processed by the

scan step
type type of scan peformed; 35 means an

AQUA scan, 2 is a normal
non-AQUA scan

disk_before total disk spaces used, from
stv_partitions, immediately before
the query

disk_after total disk spaces used, from
stv_partitions, immediately after
the query

AQUA Disabled
{'us-east-1': {'ra3.xlplus': {'aqua': {False: {False: {'equality': {0: [[[0,

datetime.timedelta(seconds=9, microseconds=207733),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=204580),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=13693),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=8, microseconds=998986),
1631721,
1683936072,
2]],

90997,
90997],

1: [[[0,
datetime.timedelta(seconds=8, microseconds=993426),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=8, microseconds=988677),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=344057),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=348855),
1631721,
1683936072,
2]],

90997,
90997],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=250344),
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1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=248743),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=550706),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=555538),
1631721,
1683936072,
2]],

90997,
90997]},

'like_%': {0: [[[0,
datetime.timedelta(seconds=9, microseconds=269197),
3263442,
3367872144,
2],

[1,
datetime.timedelta(seconds=9, microseconds=262832),
3263442,
3367872144,
2],

[2,
datetime.timedelta(seconds=9, microseconds=546041),
3263442,
3367872144,
2],

[3,
datetime.timedelta(seconds=9, microseconds=547510),
3263442,
3367872144,
2]],

90997,
90997],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=249538),
3263442,
3367872144,
2],

[1,
datetime.timedelta(seconds=9, microseconds=244753),
3263442,
3367872144,
2],

[2,
datetime.timedelta(seconds=9, microseconds=559937),
3263442,
3367872144,
2],

[3,
datetime.timedelta(seconds=9, microseconds=565394),
3263442,
3367872144,
2]],

90997,
90997],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=249663),
3263442,
3367872144,
2],

[1,
datetime.timedelta(seconds=9, microseconds=244878),
3263442,
3367872144,
2],

[2,
datetime.timedelta(seconds=9, microseconds=575789),
3263442,
3367872144,
2],

[3,
datetime.timedelta(seconds=9, microseconds=578883),
3263442,
3367872144,
2]],

90997,
90997]},

'like_a': {0: [[[0,
datetime.timedelta(seconds=9, microseconds=267869),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=269394),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=453487),
1631721,
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1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=451897),
1631721,
1683936072,
2]],

90997,
90997],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=250844),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=249226),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=404371),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=409178),
1631721,
1683936072,
2]],

90997,
90997],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=249227),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=250828),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=335284),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=349675),
1631721,
1683936072,
2]],

90997,
90997]},

'like_b': {0: [[[0,
datetime.timedelta(seconds=9, microseconds=265181),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=271362),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=455281),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=448595),
1631721,
1683936072,
2]],

90997,
90997],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=310843),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=316331),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=608579),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=597943),
1631721,
1683936072,
2]],

90997,
90997],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=250475),
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1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=245907),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=600638),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=597784),
1631721,
1683936072,
2]],

90997,
90997]},

'like_c': {0: [[[0,
datetime.timedelta(seconds=9, microseconds=262156),
0,
0,
2],

[1,
datetime.timedelta(seconds=9, microseconds=268511),
0,
0,
2],

[2,
datetime.timedelta(seconds=9, microseconds=579287),
0,
0,
2],

[3,
datetime.timedelta(seconds=9, microseconds=589439),
0,
0,
2]],

90997,
90997],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=251058),
0,
0,
2],

[1,
datetime.timedelta(seconds=9, microseconds=249509),
0,
0,
2],

[2,
datetime.timedelta(seconds=9, microseconds=408094),
0,
0,
2],

[3,
datetime.timedelta(seconds=9, microseconds=409781),
0,
0,
2]],

90997,
90997],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=251943),
0,
0,
2],

[1,
datetime.timedelta(seconds=9, microseconds=247216),
0,
0,
2],

[2,
datetime.timedelta(seconds=9, microseconds=381876),
0,
0,
2],

[3,
datetime.timedelta(seconds=9, microseconds=385503),
0,
0,
2]],

90997,
90997]},

'similar to': {0: [[[0,
datetime.timedelta(seconds=9, microseconds=298151),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=192925),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=338577),
1631721,
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1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=522980),
1631721,
1683936072,
2]],

90997,
90997],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=242530),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=259425),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=474999),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=333545),
1631721,
1683936072,
2]],

90997,
90997],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=270805),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=216178),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=489395),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=316543),
1631721,
1683936072,
2]],

90997,
90997]}},

True: {'equality': {0: [[[0,
datetime.timedelta(seconds=49, microseconds=576080),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=48, microseconds=813398),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=53, microseconds=204578),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=53, microseconds=571728),
1631721,
1683936072,
2]],

1427117,
1439879],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=224023),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=420448),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=201846),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=8, microseconds=697027),
1631721,
1683936072,
2]],

1439879,
1440006],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=261867),
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1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=265024),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds996555=9, microseconds=348863),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=345673),
1631721,
1683936072,
2]],

1440006,
1440006]},

'like_%': {0: [[[0,
datetime.timedelta(seconds=51, microseconds=763577),
3263442,
3367872144,
2],

[1,
datetime.timedelta(seconds=51, microseconds=676877),
3263442,
3367872144,
2],

[2,
datetime.timedelta(seconds=61, microseconds=149151),
3263442,
3367872144,
2],

[3,
datetime.timedelta(seconds=61, microseconds=664853),
3263442,
3367872144,
2]],

1440006,
1452862],

1: [[[0,
datetime.timedelta(seconds=8, microseconds=608361),
3263442,
3367872144,
2],

[1,
datetime.timedelta(seconds=8, microseconds=603606),
3263442,
3367872144,
2],

[2,
datetime.timedelta(seconds=8, microseconds=657271),
3263442,
3367872144,
2],

[3,
datetime.timedelta(seconds=8, microseconds=652435),
3263442,
3367872144,
2]],

1452862,
1452862],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=249899),
3263442,
3367872144,
2],

[1,
datetime.timedelta(seconds=9, microseconds=244920),
3263442,
3367872144,
2],

[2,
datetime.timedelta(seconds=9, microseconds=349570),
3263442,
3367872144,
2],

[3,
datetime.timedelta(seconds=9, microseconds=343210),
3263442,
3367872144,
2]],

1452862,
1452862]},

'like_a': {0: [[[0,
datetime.timedelta(seconds=68, microseconds=177246),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=68, microseconds=683746),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=48, microseconds=815787),
1631721,
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1683936072,
2],

[3,
datetime.timedelta(seconds=50, microseconds=480384),
1631721,
1683936072,
2]],

1452862,
1465718],

1: [[[0,
datetime.timedelta(seconds=8, microseconds=525502),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=8, microseconds=530090),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=8, microseconds=568479),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=8, microseconds=573761),
1631721,
1683936072,
2]],

1465718,
1465718],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=247934),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=250880),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=349531),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=347938),
1631721,
1683936072,
2]],

1465718,
1465718]},

'like_b': {0: [[[0,
datetime.timedelta(seconds=51, microseconds=321767),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=53, microseconds=27248),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=52, microseconds=187921),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=52, microseconds=88932),
1631721,
1683936072,
2]],

1465718,
1478574],

1: [[[0,
datetime.timedelta(seconds=8, microseconds=710603),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=8, microseconds=705800),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=350113),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=346366),
1631721,
1683936072,
2]],

1478574,
1478574],

2: [[[0,
datetime.timedelta(seconds=8, microseconds=797242),
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1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=8, microseconds=802712),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=354782),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=349460),
1631721,
1683936072,
2]],

1478574,
1478574]},

'like_c': {0: [[[0,
datetime.timedelta(seconds=50, microseconds=910098),
0,
0,
2],

[1,
datetime.timedelta(seconds=50, microseconds=761279),
0,
0,
2],

[2,
datetime.timedelta(seconds=49, microseconds=429202),
0,
0,
2],

[3,
datetime.timedelta(seconds=49, microseconds=508892),
0,
0,
2]],

1478574,
1491171],

1: [[[0,
datetime.timedelta(seconds=8, microseconds=354100),
0,
0,
2],

[1,
datetime.timedelta(seconds=8, microseconds=339638),
0,
0,
2],

[2,
datetime.timedelta(seconds=8, microseconds=398365),
0,
0,
2],

[3,
datetime.timedelta(seconds=8, microseconds=226090),
0,
0,
2]],

1491171,
1491441],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=250590),
0,
0,
2],

[1,
datetime.timedelta(seconds=9, microseconds=252165),
0,
0,
2],

[2,
datetime.timedelta(seconds=9, microseconds=351336),
0,
0,
2],

[3,
datetime.timedelta(seconds=9, microseconds=346647),
0,
0,
2]],

1491441,
1491441]},

'similar to': {0: [[[0,
datetime.timedelta(seconds=55, microseconds=580887),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=56, microseconds=749457),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=52, microseconds=61169),
1631721,
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1683936072,
2],

[3,
datetime.timedelta(seconds=53, microseconds=48903),
1631721,
1683936072,
2]],

1491441,
1504297],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=57150),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=46908),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=121725),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=127153),
1631721,
1683936072,
2]],

1504297,
1504297],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=265822),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=259137),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=366165),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=371360),
1631721,
1683936072,
2]],

1504297,
1504297]}}}},

'cluster': {False: {'Clusters': [{'AllowVersionUpgrade': True,
'AquaConfiguration': {'AquaConfigurationStatus': 'disabled',

'AquaStatus': 'disabled'},
'AutomatedSnapshotRetentionPeriod': 1,
'AvailabilityZone': 'us-east-1a',
'AvailabilityZoneRelocationStatus': 'disabled',
'ClusterAvailabilityStatus': 'Available',
'ClusterCreateTime': datetime.datetime(2022, 0, 0, 0, 0, 0, 0, tzinfo=tzutc()),
'ClusterIdentifier': 'nnn',
'ClusterNamespaceArn': 'arn:aws:redshift:us-east-1:113054258080:namespace:nnn',
'ClusterNodes': [{'NodeRole': 'LEADER',

'PrivateIPAddress': 'nnn',
'PublicIPAddress': 'nnn'},

{'NodeRole': 'COMPUTE-0',
'PrivateIPAddress': 'nnn',
'PublicIPAddress': 'nnn'},

{'NodeRole': 'COMPUTE-1',
'PrivateIPAddress': 'nnn',
'PublicIPAddress': 'nnn'}],

'ClusterParameterGroups': [{'ParameterApplyStatus': 'in-sync',
'ParameterGroupName': 'nnn'}],

'ClusterPublicKey': 'ssh-rsa '
'nnn'
'Amazon-Redshift\n',

'ClusterRevisionNumber': '41533',
'ClusterSecurityGroups': [],
'ClusterStatus': 'available',
'ClusterSubnetGroupName': 'nnn',
'ClusterVersion': '1.0',
'DBName': 'dev',
'DeferredMaintenanceWindows': [],
'ElasticResizeNumberOfNodeOptions': '[4]',
'Encrypted': False,
'Endpoint': {'Address': 'nnn.us-east-1.redshift.amazonaws.com',

'Port': 5439},
'EnhancedVpcRouting': False,
'IamRoles': [],
'MaintenanceTrackName': 'current',
'ManualSnapshotRetentionPeriod': 1,
'MasterUsername': 'admin',
'NextMaintenanceWindowStartTime': datetime.datetime(2022, 0, 0, 0, 0, tzinfo=tzutc()),
'NodeType': 'ra3.xlplus',
'NumberOfNodes': 2,
'PendingModifiedValues': {},
'PreferredMaintenanceWindow': 'nnn',
'PubliclyAccessible': True,
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'Tags': [],
'VpcId': 'vpc-081763ed917bf7994',
'VpcSecurityGroups': [{'Status': 'active',

'VpcSecurityGroupId': 'nnn'}]}],
'ResponseMetadata': {'HTTPHeaders': {'content-length': 'n',

'content-type': 'text/xml',
'date': 'n, '

'n '
'n '
'n '
'n '
'GMT',

'vary': 'accept-encoding',
'x-amzn-requestid': 'nnn'},

'HTTPStatusCode': 200,
'RequestId': 'nnn',
'RetryAttempts': 0}}}}}}

AQUA Enabled
{'us-east-1': {'ra3.xlplus': {'aqua': {True: {False: {'equality': {0: [[[0,

datetime.timedelta(seconds=9, microseconds=204733),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=176037),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=8, microseconds=823521),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=8, microseconds=822097),
1631721,
1683936072,
2]],

90999,
91016],

1: [[[0,
datetime.timedelta(seconds=9, microseconds=248911),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=250495),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=8, microseconds=578060),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=8, microseconds=576426),
1631721,
1683936072,
2]],

91016,
91016],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=247384),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=250562),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=352312),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=350722),
1631721,
1683936072,
2]],

91016,
91016]},

'like_%': {0: [[[0,
datetime.timedelta(seconds=43, microseconds=327411),
7,
56,
35],

[1,
datetime.timedelta(seconds=43, microseconds=899995),
7,
56,
35],
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[2,
datetime.timedelta(seconds=41, microseconds=643454),
7,
56,
35],

[3,
datetime.timedelta(seconds=42, microseconds=943825),
7,
56,
35]],

91016,
91016],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=744283),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=791337),
7,
56,
35],

[2,
datetime.timedelta(seconds=3, microseconds=399622),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=745078),
7,
56,
35]],

91016,
91016],

2: [[[0,
datetime.timedelta(seconds=1, microseconds=731125),
7,
56,
35],

[1,
datetime.timedelta(seconds=4, microseconds=634349),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=807203),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=766072),
7,
56,
35]],

91016,
91016]},

'like_a': {0: [[[0,
datetime.timedelta(seconds=41, microseconds=195449),
7,
56,
35],

[1,
datetime.timedelta(seconds=41, microseconds=796387),
7,
56,
35],

[2,
datetime.timedelta(seconds=43, microseconds=170872),
7,
56,
35],

[3,
datetime.timedelta(seconds=41, microseconds=442968),
7,
56,
35]],

91016,
91016],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=559614),
7,
56,
35],

[1,
datetime.timedelta(seconds=2, microseconds=288364),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=580123),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=581609),
7,
56,
35]],

91016,
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91016],
2: [[[0,

datetime.timedelta(seconds=1, microseconds=664650),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=589867),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=605557),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=574602),
7,
56,
35]],

91016,
91016]},

'like_b': {0: [[[0,
datetime.timedelta(seconds=43, microseconds=572248),
7,
56,
35],

[1,
datetime.timedelta(seconds=42, microseconds=263507),
7,
56,
35],

[2,
datetime.timedelta(seconds=42, microseconds=688915),
7,
56,
35],

[3,
datetime.timedelta(seconds=46, microseconds=140976),
7,
56,
35]],

91016,
91016],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=851338),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=867054),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=858184),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=770956),
7,
56,
35]],

91016,
91016],

2: [[[0,
datetime.timedelta(seconds=1, microseconds=623430),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=566698),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=577199),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=511778),
7,
56,
35]],

91016,
91016]},

'like_c': {0: [[[0,
datetime.timedelta(seconds=42, microseconds=210546),
7,
56,
35],

[1,
datetime.timedelta(seconds=43, microseconds=961976),
7,
56,
35],
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[2,
datetime.timedelta(seconds=42, microseconds=622863),
7,
56,
35],

[3,
datetime.timedelta(seconds=46, microseconds=603875),
7,
56,
35]],

91016,
91016],

1: [[[0,
datetime.timedelta(microseconds=901284),
7,
56,
35],

[1,
datetime.timedelta(microseconds=917168),
7,
56,
35],

[2,
datetime.timedelta(microseconds=850170),
7,
56,
35],

[3,
datetime.timedelta(microseconds=905184),
7,
56,
35]],

91016,
91016],

2: [[[0,
datetime.timedelta(seconds=1, microseconds=2802),
7,
56,
35],

[1,
datetime.timedelta(microseconds=972192),
7,
56,
35],

[2,
datetime.timedelta(microseconds=913016),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=145805),
7,
56,
35]],

91016,
91016]},

'similar to': {0: [[[0,
datetime.timedelta(seconds=46, microseconds=94824),
7,
56,
35],

[1,
datetime.timedelta(seconds=42, microseconds=369193),
7,
56,
35],

[2,
datetime.timedelta(seconds=48, microseconds=642382),
7,
56,
35],

[3,
datetime.timedelta(seconds=41, microseconds=628065),
7,
56,
35]],

91016,
91016],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=521027),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=583562),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=595717),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=567324),
7,
56,
35]],

91016,
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91016],
2: [[[0,

datetime.timedelta(seconds=1, microseconds=490310),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=542446),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=602099),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=591313),
7,
56,
35]],

91016,
91016]}},

True: {'equality': {0: [[[0,
datetime.timedelta(seconds=50, microseconds=714166),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=49, microseconds=495406),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=49, microseconds=868700),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=49, microseconds=279289),
1631721,
1683936072,
2]],

1427117,
1439794],

1: [[[0,
datetime.timedelta(seconds=8, microseconds=931096),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=8, microseconds=995204),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=8, microseconds=328496),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=8, microseconds=772002),
1631721,
1683936072,
2]],

1439794,
1439981],

2: [[[0,
datetime.timedelta(seconds=9, microseconds=272983),
1631721,
1683936072,
2],

[1,
datetime.timedelta(seconds=9, microseconds=278882),
1631721,
1683936072,
2],

[2,
datetime.timedelta(seconds=9, microseconds=349943),
1631721,
1683936072,
2],

[3,
datetime.timedelta(seconds=9, microseconds=346755),
1631721,
1683936072,
2]],

1439981,
1439981]},

'like_%': {0: [[[0,
datetime.timedelta(seconds=45, microseconds=996555),
7,
56,
35],

[1,
datetime.timedelta(seconds=48, microseconds=870548),
7,
56,
35],
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[2,
datetime.timedelta(seconds=45, microseconds=798664),
7,
56,
35],

[3,
datetime.timedelta(seconds=46, microseconds=332533),
7,
56,
35]],

1439981,
1439981],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=889942),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=829568),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=786090),
7,
56,
35],

[3,
datetime.timedelta(seconds=3, microseconds=406696),
7,
56,
35]],

1439981,
1439981],

2: [[[0,
datetime.timedelta(seconds=1, microseconds=773647),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=848038),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=817244),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=824604),
7,
56,
35]],

1439981,
1439981]},

'like_a': {0: [[[0,
datetime.timedelta(seconds=46, microseconds=308171),
7,
56,
35],

[1,
datetime.timedelta(seconds=104, microseconds=695472),
7,
56,
35],

[2,
datetime.timedelta(seconds=46, microseconds=558651),
7,
56,
35],

[3,
datetime.timedelta(seconds=48, microseconds=327062),
7,
56,
35]],

1439981,
1439987],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=611775),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=605035),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=549466),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=516289),
7,
56,
35]],

1439987,

39



1439987],
2: [[[0,

datetime.timedelta(seconds=1, microseconds=580145),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=640644),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=537107),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=512776),
7,
56,
35]],

1439987,
1439987]},

'like_b': {0: [[[0,
datetime.timedelta(seconds=46, microseconds=227704),
7,
56,
35],

[1,
datetime.timedelta(seconds=46, microseconds=398593),
7,
56,
35],

[2,
datetime.timedelta(seconds=48, microseconds=542814),
7,
56,
35],

[3,
datetime.timedelta(seconds=49, microseconds=854854),
7,
56,
35]],

1439987,
1439987],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=596248),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=557935),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=602313),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=626484),
7,
56,
35]],

1439987,
1439987],

2: [[[0,
datetime.timedelta(seconds=1, microseconds=594181),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=576170),
7,
56,
35],

[2,
datetime.timedelta(seconds=2, microseconds=305109),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=566581),
7,
56,
35]],

1439987,
1439987]},

'like_c': {0: [[[0,
datetime.timedelta(seconds=51, microseconds=31678),
7,
56,
35],

[1,
datetime.timedelta(seconds=47, microseconds=104351),
7,
56,
35],
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[2,
datetime.timedelta(seconds=47, microseconds=5895),
7,
56,
35],

[3,
datetime.timedelta(seconds=52, microseconds=106889),
7,
56,
35]],

1439987,
1439987],

1: [[[0,
datetime.timedelta(microseconds=887638),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=20990),
7,
56,
35],

[2,
datetime.timedelta(microseconds=814183),
7,
56,
35],

[3,
datetime.timedelta(microseconds=874858),
7,
56,
35]],

1439987,
1439987],

2: [[[0,
datetime.timedelta(microseconds=923204),
7,
56,
35],

[1,
datetime.timedelta(microseconds=924688),
7,
56,
35],

[2,
datetime.timedelta(microseconds=892344),
7,
56,
35],

[3,
datetime.timedelta(microseconds=909735),
7,
56,
35]],

1439987,
1439987]},

'similar to': {0: [[[0,
datetime.timedelta(seconds=49, microseconds=881206),
7,
56,
35],

[1,
datetime.timedelta(seconds=92, microseconds=406387),
7,
56,
35],

[2,
datetime.timedelta(seconds=46, microseconds=325607),
7,
56,
35],

[3,
datetime.timedelta(seconds=46, microseconds=805514),
7,
56,
35]],

1439987,
1439987],

1: [[[0,
datetime.timedelta(seconds=1, microseconds=543379),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=624610),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=553433),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=534623),
7,
56,
35]],

1439987,
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1439987],
2: [[[0,

datetime.timedelta(seconds=1, microseconds=608424),
7,
56,
35],

[1,
datetime.timedelta(seconds=1, microseconds=597847),
7,
56,
35],

[2,
datetime.timedelta(seconds=1, microseconds=615707),
7,
56,
35],

[3,
datetime.timedelta(seconds=1, microseconds=618182),
7,
56,
35]],

1439987,
1439987]}}}},

'cluster': {True: {'Clusters': [{'AllowVersionUpgrade': True,
'AquaConfiguration': {'AquaConfigurationStatus': 'enabled',

'AquaStatus': 'enabled'},
'AutomatedSnapshotRetentionPeriod': 1,
'AvailabilityZone': 'us-east-1a',
'AvailabilityZoneRelocationStatus': 'disabled',
'ClusterAvailabilityStatus': 'Available',
'ClusterCreateTime': datetime.datetime(2022, 0, 0, 0, 0, 0, 0, tzinfo=tzutc()),
'ClusterIdentifier': 'nnn',
'ClusterNamespaceArn': 'nnn',
'ClusterNodes': [{'NodeRole': 'LEADER',

'PrivateIPAddress': 'nnn',
'PublicIPAddress': 'nnn'},

{'NodeRole': 'COMPUTE-0',
'PrivateIPAddress': 'nnn',
'PublicIPAddress': 'nnn'},

{'NodeRole': 'COMPUTE-1',
'PrivateIPAddress': 'nnn',
'PublicIPAddress': 'nnn'}],

'ClusterParameterGroups': [{'ParameterApplyStatus': 'in-sync',
'ParameterGroupName': 'nnn'}],

'ClusterPublicKey': 'ssh-rsa '
'nnn'
'Amazon-Redshift\n',

'ClusterRevisionNumber': '41533',
'ClusterSecurityGroups': [],
'ClusterStatus': 'available',
'ClusterSubnetGroupName': 'nnn',
'ClusterVersion': '1.0',
'DBName': 'dev',
'DeferredMaintenanceWindows': [],
'ElasticResizeNumberOfNodeOptions': '[4]',
'Encrypted': False,
'Endpoint': {'Address': 'nnn',

'Port': 5439},
'EnhancedVpcRouting': False,
'IamRoles': [],
'MaintenanceTrackName': 'current',
'ManualSnapshotRetentionPeriod': 1,
'MasterUsername': 'admin',
'NextMaintenanceWindowStartTime': datetime.datetime(2022, 0, 0, 0, 0, tzinfo=tzutc()),
'NodeType': 'ra3.xlplus',
'NumberOfNodes': 2,
'PendingModifiedValues': {},
'PreferredMaintenanceWindow': 'nnn',
'PubliclyAccessible': True,
'Tags': [],
'VpcId': 'nnn',
'VpcSecurityGroups': [{'Status': 'active',

'VpcSecurityGroupId': 'nnn'}]}],
'ResponseMetadata': {'HTTPHeaders': {'content-length': '4273',

'content-type': 'text/xml',
'date': 'n, '

'n '
'n '
'n '
'n '
'GMT',

'vary': 'accept-encoding',
'x-amzn-requestid': 'nnn'},

'HTTPStatusCode': 200,
'RequestId': 'nnn',
'RetryAttempts': 0}}}}}}

Appendix B : Step Plans
These step plans are for the query select count(*) from table_2 where
column_2 like '%a%';.
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NO AQUA
qid | stream | segment | step | node_id | slice_id | step_type | rows | bytes | seg_start_time | seg_duration | table_name | notes

------+--------+---------+------+---------+----------+-----------+---------+------------+-----------------+--------------+------------+-----------------------------------------
1006 | 0 | 0 | 0 | 0 | 0 | scan | 3263442 | 3367872144 | 09:10:39.483359 | 4.870199s | table_2 | scan data from user table
1006 | 0 | 0 | 0 | 0 | 1 | scan | 3263442 | 3367872144 | 09:10:39.48336 | 4.873962s | table_2 | scan data from user table
1006 | 0 | 0 | 0 | 1 | 2 | scan | 3263442 | 3367872144 | 09:10:39.482804 | 5.161395s | table_2 | scan data from user table
1006 | 0 | 0 | 0 | 1 | 3 | scan | 3263442 | 3367872144 | 09:10:39.482863 | 5.149253s | table_2 | scan data from user table
1006 | 0 | 0 | 1 | 0 | 0 | project | 3263442 | | 09:10:39.483359 | 4.870199s | |
1006 | 0 | 0 | 1 | 0 | 1 | project | 3263442 | | 09:10:39.48336 | 4.873962s | |
1006 | 0 | 0 | 1 | 1 | 2 | project | 3263442 | | 09:10:39.482804 | 5.161395s | |
1006 | 0 | 0 | 1 | 1 | 3 | project | 3263442 | | 09:10:39.482863 | 5.149253s | |
1006 | 0 | 0 | 2 | 0 | 0 | project | 3263442 | | 09:10:39.483359 | 4.870199s | |
1006 | 0 | 0 | 2 | 0 | 1 | project | 3263442 | | 09:10:39.48336 | 4.873962s | |
1006 | 0 | 0 | 2 | 1 | 2 | project | 3263442 | | 09:10:39.482804 | 5.161395s | |
1006 | 0 | 0 | 2 | 1 | 3 | project | 3263442 | | 09:10:39.482863 | 5.149253s | |
1006 | 0 | 0 | 3 | 0 | 0 | aggregate | 1 | 8 | 09:10:39.483359 | 4.870199s | | ungrouped, scalar aggregation in memory
1006 | 0 | 0 | 3 | 0 | 1 | aggregate | 1 | 8 | 09:10:39.48336 | 4.873962s | | ungrouped, scalar aggregation in memory
1006 | 0 | 0 | 3 | 1 | 2 | aggregate | 1 | 8 | 09:10:39.482804 | 5.161395s | | ungrouped, scalar aggregation in memory
1006 | 0 | 0 | 3 | 1 | 3 | aggregate | 1 | 8 | 09:10:39.482863 | 5.149253s | | ungrouped, scalar aggregation in memory
1006 | 1 | 1 | 0 | 0 | 0 | scan | 1 | 8 | 09:10:44.646207 | 0.000056s | | scan data from temp table
1006 | 1 | 1 | 0 | 0 | 1 | scan | 1 | 8 | 09:10:44.646208 | 0.000081s | | scan data from temp table
1006 | 1 | 1 | 0 | 1 | 2 | scan | 1 | 8 | 09:10:44.645471 | 0.000069s | | scan data from temp table
1006 | 1 | 1 | 0 | 1 | 3 | scan | 1 | 8 | 09:10:44.645511 | 0.000065s | | scan data from temp table
1006 | 1 | 1 | 1 | 0 | 0 | return | 1 | 8 | 09:10:44.646207 | 0.000056s | |
1006 | 1 | 1 | 1 | 0 | 1 | return | 1 | 8 | 09:10:44.646208 | 0.000081s | |
1006 | 1 | 1 | 1 | 1 | 2 | return | 1 | 8 | 09:10:44.645471 | 0.000069s | |
1006 | 1 | 1 | 1 | 1 | 3 | return | 1 | 8 | 09:10:44.645511 | 0.000065s | |
1006 | 1 | 2 | 0 | | 12817 | scan | 4 | 32 | 09:10:44.655443 | 0.000761s | | scan data from network to temp table
1006 | 1 | 2 | 1 | | 12817 | aggregate | 1 | 16 | 09:10:44.655443 | 0.000761s | | ungrouped, scalar aggregation in memory
1006 | 2 | 3 | 0 | | 12817 | scan | 1 | 16 | 09:10:44.657433 | 0.000065s | | scan data from temp table
1006 | 2 | 3 | 1 | | 12817 | project | 1 | | 09:10:44.657433 | 0.000065s | |
1006 | 2 | 3 | 2 | | 12817 | project | 1 | | 09:10:44.657433 | 0.000065s | |
1006 | 2 | 3 | 3 | | 12817 | return | 1 | 14 | 09:10:44.657433 | 0.000065s | |

(30 rows)

AQUA
qid | stream | segment | step | node_id | slice_id | step_type | rows | bytes | seg_start_time | seg_duration | table_name | notes

-----+--------+---------+------+---------+----------+-----------+------+-------+-----------------+--------------+------------+-----------------------------------------
833 | 0 | 0 | 0 | 0 | 0 | scan | 7 | 56 | 08:54:21.685284 | 42.673772s | table_2 | scan data from an AQUA scan of RSM
833 | 0 | 0 | 0 | 0 | 1 | scan | 7 | 56 | 08:54:21.685284 | 40.915049s | table_2 | scan data from an AQUA scan of RSM
833 | 0 | 0 | 0 | 1 | 2 | scan | 7 | 56 | 08:54:21.682799 | 50.529760s | table_2 | scan data from an AQUA scan of RSM
833 | 0 | 0 | 0 | 1 | 3 | scan | 7 | 56 | 08:54:21.682798 | 40.881619s | table_2 | scan data from an AQUA scan of RSM
833 | 0 | 0 | 1 | 0 | 0 | project | 7 | | 08:54:21.685284 | 42.673772s | |
833 | 0 | 0 | 1 | 0 | 1 | project | 7 | | 08:54:21.685284 | 40.915049s | |
833 | 0 | 0 | 1 | 1 | 2 | project | 7 | | 08:54:21.682799 | 50.529760s | |
833 | 0 | 0 | 1 | 1 | 3 | project | 7 | | 08:54:21.682798 | 40.881619s | |
833 | 0 | 0 | 2 | 0 | 0 | project | 7 | | 08:54:21.685284 | 42.673772s | |
833 | 0 | 0 | 2 | 0 | 1 | project | 7 | | 08:54:21.685284 | 40.915049s | |
833 | 0 | 0 | 2 | 1 | 2 | project | 7 | | 08:54:21.682799 | 50.529760s | |
833 | 0 | 0 | 2 | 1 | 3 | project | 7 | | 08:54:21.682798 | 40.881619s | |
833 | 0 | 0 | 3 | 0 | 0 | aggregate | 1 | 16 | 08:54:21.685284 | 42.673772s | | ungrouped, scalar aggregation in memory
833 | 0 | 0 | 3 | 0 | 1 | aggregate | 1 | 16 | 08:54:21.685284 | 40.915049s | | ungrouped, scalar aggregation in memory
833 | 0 | 0 | 3 | 1 | 2 | aggregate | 1 | 16 | 08:54:21.682799 | 50.529760s | | ungrouped, scalar aggregation in memory
833 | 0 | 0 | 3 | 1 | 3 | aggregate | 1 | 16 | 08:54:21.682798 | 40.881619s | | ungrouped, scalar aggregation in memory
833 | 1 | 1 | 0 | 0 | 0 | scan | 1 | 16 | 08:55:12.2209 | 0.000172s | | scan data from temp table
833 | 1 | 1 | 0 | 0 | 1 | scan | 1 | 16 | 08:55:12.2211 | 0.000160s | | scan data from temp table
833 | 1 | 1 | 0 | 1 | 2 | scan | 1 | 16 | 08:55:12.219693 | 0.000190s | | scan data from temp table
833 | 1 | 1 | 0 | 1 | 3 | scan | 1 | 16 | 08:55:12.21922 | 0.000094s | | scan data from temp table
833 | 1 | 1 | 1 | 0 | 0 | return | 1 | 16 | 08:55:12.2209 | 0.000172s | |
833 | 1 | 1 | 1 | 0 | 1 | return | 1 | 16 | 08:55:12.2211 | 0.000160s | |
833 | 1 | 1 | 1 | 1 | 2 | return | 1 | 16 | 08:55:12.219693 | 0.000190s | |
833 | 1 | 1 | 1 | 1 | 3 | return | 1 | 16 | 08:55:12.21922 | 0.000094s | |
833 | 1 | 2 | 0 | | 12811 | scan | 4 | 64 | 08:55:12.226857 | 0.003931s | | scan data from network to temp table
833 | 1 | 2 | 1 | | 12811 | aggregate | 1 | 16 | 08:55:12.226857 | 0.003931s | | ungrouped, scalar aggregation in memory
833 | 2 | 3 | 0 | | 12811 | scan | 1 | 16 | 08:55:12.28113 | 0.000199s | | scan data from temp table
833 | 2 | 3 | 1 | | 12811 | project | 1 | | 08:55:12.28113 | 0.000199s | |
833 | 2 | 3 | 2 | | 12811 | project | 1 | | 08:55:12.28113 | 0.000199s | |
833 | 2 | 3 | 3 | | 12811 | return | 1 | 14 | 08:55:12.28113 | 0.000199s | |

(30 rows)
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